354 results on '"Mondal J"'
Search Results
2. Design, fabrication and relative bunch length measurement of S-band pre-buncher
- Author
-
Mondal, J., Mishra, L., Sarkar, Shreya, Manjunatha, H.K., Chandan, Shiv, Bakhtsingh, R.I., and Sharma, Archana
- Published
- 2021
- Full Text
- View/download PDF
3. Ferredoxin: the central hub connecting photosystem I to cellular metabolism
- Author
-
Mondal, J. and Bruce, B. D.
- Published
- 2018
- Full Text
- View/download PDF
4. Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac
- Author
-
Mondal, J., Chandan, Shiv, Parashar, S., Bhattacharjee, D., Tillu, A.R., Tiwari, R., Jayapraksh, D., Yadav, V., Banerjee, S., Choudhury, N., Ghodke, S.R., Dixit, K.P., and Nimje, V.T.
- Published
- 2015
- Full Text
- View/download PDF
5. Thermal conductivity of large-grain niobium and its effect on trapped vortices in the temperature range 1.8–5 K
- Author
-
MONDAL, J, CIOVATI, G, MITTAL, K C, and MYNENI, G R
- Published
- 2012
- Full Text
- View/download PDF
6. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam
- Author
-
HADAP, A, MONDAL, J, MITTAL, K C, and MAHESHWARI, K P
- Published
- 2011
- Full Text
- View/download PDF
7. Interlaboratory proficiency testing: Intercomparison in relation to the measurement of alumina, iron(III) oxide and Titania present in homogenised china clay
- Author
-
Basak, S., Mukherjee, S. S., Mandal, S. N., Das, Rama, Mazumder, A. K., Mondal, J. K., Sammaddar, R., Mondal, S., and Kundu, Dipali
- Published
- 2010
- Full Text
- View/download PDF
8. RF properties of 700 MHz, β = 0.42 elliptical cavity for high current proton acceleration
- Author
-
Roy, Amitava, Mondal, J., and Mittal, K. C.
- Published
- 2008
- Full Text
- View/download PDF
9. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction
- Author
-
Bishayee, K., Ghosh, S., Mukherjee, A., Sadhukhan, R., Mondal, J., and Khuda-Bukhsh, A. R.
- Published
- 2013
- Full Text
- View/download PDF
10. Magnetic, thermal and hyperfine behaviours of Tm3+ in TmPO4, YPO4 and LuPO4: A comparative study
- Author
-
Chakrabarti, P. K., Chattopadhyay, K. N., Modak, S., and Mondal, J.
- Published
- 2007
11. Bi-layer functionally gradient thick film semiconducting methane sensors
- Author
-
Banerjee, A., Haldar, A. K., Mondal, J., Sen, A., and Maiti, H. S.
- Published
- 2002
- Full Text
- View/download PDF
12. Effect of annealing temperature on the sensitivity of tin dioxide films prepared via a sulphide route
- Author
-
Banerjee, A., Chattopadhyay, D., Mukherjee, R., Halder, A. K., Mondal, J., Sen, A., and Maiti, H. S.
- Published
- 2001
- Full Text
- View/download PDF
13. Design Procedure of a Turbopump Test Bench
- Author
-
Pauw, J. D., Veggi, L., Wagner, Bernd, Mondal, J., Klotz, M., Haidn, O., Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), German Aerospace Center (DLR), and Indian Institute of Technology Kharagpur (IIT Kharagpur)
- Subjects
test bench design ,liquid oxygen scaling ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] ,rocket Motor ,turbopump ,rocket test bench - Abstract
International audience; The high complexity of turbopumps for liquid rocket engines and their demanding requirements necessitate that their design process is accompanied by extensive experimental investigations and validation tests. is paper presents the design procedure for a rocket turbopump test bench, where water is used as a surrogate for the cryogenic fluids usually used in rocket engines. Scaling methods, that allow for a comparison of tests under varying conditions, are reviewed from literature and applied to derive the necessary dimensions of the test bench. The resulting test bench design is shown in detail and its capabilities to support the turbopump design process are assessed. Further, the operational envelope of the derived test bench design is evaluated with respect to later tests of different pumps.
- Published
- 2017
14. Fuzzy Logic Controller Design for Voltage, Frequency, Current and Power Control of Three-phase Distributed Generation Based Islanded Microgrid.
- Author
-
Dola, S. A., Mondal, J., Khandoker, A. A., Shahriar, S., Arifuzzaman, M. D., Badal, F. R., Mondol, N., and Das, S. K.
- Subjects
FUZZY logic ,LOGIC design ,MICROGRIDS ,RENEWABLE energy sources ,ELECTRIC power consumption ,ENERGY storage - Abstract
Today’s clean technologies related to microgrids are approaching towards the smart nanogrid system. It fulfils the demand of the electricity throughout the world by proper using of renewable energy sources and energy storage systems. Still, the microgrid (MG) power plant control has enriched to a level that it will require complicated and smooth control in the grid interaction including distributed islanding operation. The load dynamics and uncertainties are the common issues which hampers the frequency, voltage and power profile of the MG that is responsible to damage the load and power system. The design of robust fuzzy logic controller (FLC) has been proposed in this research article to regulate the performances of three-phase islanded MG. The performance of the proposed FLC has been examined under different loading condition whose robustness has been evaluated under faulty condition. The investigated performances of the MG ensure high tracking and robust performance of the proposed FLC. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
15. A Novel Security Unit with Mitigating Frequency Deviation for Interconnected Power System Considering Cyberattack.
- Author
-
Mondal, J., Badal, F. R., Nayem, Z., Chakraborty, D., Hossain, T., Arifuzzaman, M. D., Mondol, N., and Das, S. K.
- Subjects
INTERCONNECTED power systems ,INFORMATION & communication technologies for development ,CYBERTERRORISM ,ELECTRIC power consumption ,ELECTRIC power - Abstract
Interconnected power system is a promising source of electric power that fulfils the excess demand of electricity throughout the world whose safe and reliable operation is necessary for decreasing loadshedding and increasing resiliency. The development of information and communication technology (ICT) not only blessing for us but also hampers our technology by promoting cyber-crime. Cyber-attack (CA) on power system is now becoming a common problem that produces unauthorized access to the control unit of power system and hampers the whole system partially or completely by changing the sensitive data of power system and control unit. The performance of the power system is regulated by employing a fractional- order-proportional-integral-derivative (FPID) controller and is compared with conventional PID controller in this paper. The reliable performance of the power system completely depends on the efficient design of controller, but the parameters of the controller are largely affected by the CA and damage the whole system. Any change of the control unit or the system parameters may decrease the resiliency and the stability of the power system. An automatic cyber-attack mitigation technique (ACAMU) has been proposed in this article to completely mitigate the CA and its impact on the system and controller to enhance the security and resiliency of power system by maintaining a fixed data for both system and controller. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. Analysis of transients in high voltage multipliers.
- Author
-
Rajan, R.N., Mitra, A., Sharma, D.K., Dewangan, S., Patel, R., Das, S.H., Mondal, J., Bakhtsingh, R.I., and Sharma, A.
- Published
- 2021
- Full Text
- View/download PDF
17. Effect of alumina addition on methane sensitivity of tin dioxide thick films
- Author
-
Saha, M., Banerjee, A., Halder, A.K., Mondal, J., Sen, A., and Maiti, H.S.
- Published
- 2001
- Full Text
- View/download PDF
18. Mixed application MMIC technologies - Progress in combining RF, digital and photonic circuits
- Author
-
Swirhun, S, Bendett, M, Sokolov, V, Bauhahn, P, Sullivan, C, Mactaggart, R, Mukherjee, S, Hibbs-Brenner, M, and Mondal, J
- Subjects
Electronics And Electrical Engineering - Abstract
Approaches for future 'mixed application' monolithic integrated circuits (ICs) employing optical receive/transmit, RF amplification and modulation and digital control functions are discussed. We focus on compatibility of the photonic component fabrication with conventional RF and digital IC technologies. Recent progress at Honeywell in integrating several parts of the desired RF/digital/photonic circuit integration suite required for construction of a future millimeter-wave optically-controlled phased-array element are illustrated.
- Published
- 1991
19. Magnetic susceptibilities, crystal field Stark energies, and hyperfine behavior of Sm3+ in hexagonal single crystals of Sm(CF3SO3)3·9H2O.
- Author
-
Mondal, J., Acharya, S., Bisui, D., Chattopadhyay, K. N., Ghosh, M., and Chakrabarti, P. K.
- Subjects
- *
MAGNETIC susceptibility , *CRYSTAL field theory , *STARK effect , *MAGNETIC fields , *CRYSTAL whiskers , *ANISOTROPY , *RAMAN effect , *FOURIER transform infrared spectroscopy - Abstract
Single crystals of samarium trifluoromethanesulfonate (SmTFMS) were prepared from the slow evaporation of the aqueous solution of SmTFMS. The crystals are elongated along the symmetry axis c of the hexagonal crystal. At room temperature, the c axis of the crystal sets parallel with the applied magnetic field which indicates that the susceptibility parallel to the c axis (χ∥) is greater than the susceptibility perpendicular to the c axis (χ⊥). χ∥ and χ⊥ were measured from 300 down to 14 K. Magnetic anisotropy (Δχ=χ∥-χ⊥) obtained from the values of χ∥ and χ⊥ was also checked by direct measurements of Δχ and both these results agreed very well. A crossover between χ∥ and χ⊥ has been observed at ∼56 K i.e., below this temperature χ∥<χ⊥. A good theoretical simulation of the observed magnetic data of SmTFMS has been achieved using the one-electron crystal field (CF) theory. Ordering effects in the observed magnetic data were not noticed down to the lowest temperature (∼14 K) attained, indicating the interionic interaction to be of predominantly dipolar type. To substantiate the CF analysis, the Raman and Fourier transform infrared (FTIR) spectra of the single crystal of SmTFMS were recorded in the wave number ranges of 100–1800 and 400–7000 cm-1, respectively. The calculated values of the CF Stark energies of all the excited multiplets are in agreement with those extracted from the Raman and FTIR spectra. Thermal variation of the calculated electronic specific heat shows Schottky anomaly at ∼8 K. The temperature dependences of quadruple splitting and hyperfine heat capacity were also studied. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
20. Intense gigawatt relativistic electron beam generation in the presence of prepulse. Part II.
- Author
-
Roy, Amitava, Mondal, J., Menon, R., Mitra, S., Kumar, D. D. P., Sharma, Archana, Mittal, K. C., Nagesh, K. V., and Chakravarthy, D. P.
- Subjects
- *
ELECTRON beams , *DIODES , *PARTICLES (Nuclear physics) , *PULSED power systems , *ENERGY storage - Abstract
Intense relativistic electron beam diode has been operated without a prepulse switch. Our previously reported results demonstrated that the large pulse power systems in the presence of prepulse can deliver gigawatt power pulses into a matched load if the anode cathode gap is set larger than that estimated by the Child Langmuir relation. This article reports some more experimental results on the current and voltage characteristics, the shot to shot reproducibility of the diode in the presence of prepulse. Intense electron beam diode behavior was studied for various anode cathode gaps and voltages in presence of prepulse. It has been observed that for small gap, prepulse generated plasma completely fills the anode cathode gap and the diode behaves as plasma filled diode. At a large gap the beam parameters obtained are 420 keV, 22 kA, 100 ns. From the experimentally obtained values of perveance an upper limit was set up for the Marx voltage (or anode cathode voltage) and lower limit for the anode cathode gap in order to avoid the gap closure problem and the diode can be operated with a better shot to shot reproducibility. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
21. Intense gigawatt relativistic electron beam generation in the presence of prepulse.
- Author
-
Mondal, J., Kumar, D. D. P., Roy, A., Mitra, S., Sharma, A., Singh, S. K., Rao, G. V., Mittal, K. C., Nagesh, K. V., and Chakravarthy, D. P.
- Subjects
- *
ELECTRON beams , *ELECTRONIC pulse techniques , *PLASMA gases , *ELECTRODES , *NUCLEAR research laboratories - Abstract
Large pulse power systems in the presence of prepulse can deliver gigawatt power pulses into a matched load. While employing these pulse power systems for the generation of intense relativistic electron beams (IREBs), the prepulse initiated plasma closes the anode cathode gap, if the gap distance is set by the Child-Langmuir formula. In order to reduce the prepulse effect, the anode cathode gap has been increased for the generation of IREB with output parameters of 400 kV, 20 kA, and 100 ns pulse duration. In this paper the generation of IREB in the presence of prepulse without using any prepulse switch has been discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
22. Magnetic susceptibilities, crystal field Stark energies, and hyperfine behavior of [Sm.sup.3+] in hexagonal single crystals of Sm[(C[F.sub.3]S[O.sub.3]).sub.3].9[H.sub.2]O
- Author
-
Mondal, J., Acharya, S., Bisui, D., Chattopadhyay, K.N., Ghosh, M., and Chakrabarti, P.K.
- Subjects
Samarium -- Magnetic properties ,Samarium -- Electric properties ,Semiconductor-metal boundaries -- Analysis ,Stark effect -- Analysis ,Sulfones -- Magnetic properties ,Sulfones -- Electric properties ,Physics - Abstract
Single crystals of samarium trifluoromethanesulfonate (SmTFMS) are prepared from the slow evaporation of the aqueous solution of SmTFMS and the magnetic susceptibilities, crystal field Stark energies and hyperfine behavior are studied. Thermal variation of the electronic specific heat has shown Schottky anomaly at 8 K and the temperature dependences of quadruple splitting and hyperfine heat capacity are studied.
- Published
- 2009
23. MM-Wave fixture deembedding in 26.5–40 GHz band
- Author
-
Mondal, J. P.
- Published
- 1989
- Full Text
- View/download PDF
24. Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer
- Author
-
Saha Tanmoy, Mondal Jayanta, Khiste Sachin, Lusic Hrvoje, Hu Zhang-Wei, Jayabalan Ruparoshni, Hodgetts Kevin J., Jang HaeLin, Sengupta Shiladitya, Lee Somin Eunice, Park Younggeun, Lee Luke P., and Goldman Aaron
- Subjects
cancer biology ,chemotherapy ,drug resistance ,nanomedicine ,Physics ,QC1-999 - Abstract
Targeted delivery of drugs to tumor cells, which circumvent resistance mechanisms and induce cell killing, is a lingering challenge that requires innovative solutions. Here, we provide two bioengineered strategies in which nanotechnology is blended with cancer medicine to preferentially target distinct mechanisms of drug resistance. In the first ‘case study’, we demonstrate the use of lipid–drug conjugates that target molecular signaling pathways, which result from taxane-induced drug tolerance via cell surface lipid raft accumulations. Through a small molecule drug screen, we identify a kinase inhibitor that optimally destroys drug tolerant cancer cells and conjugate it to a rationally-chosen lipid scaffold, which enhances anticancer efficacy in vitro and in vivo. In the second ‘case study’, we address resistance mechanisms that can occur through exocytosis of nanomedicines. Using adenocarcinoma HeLa and MCF-7 cells, we describe the use of gold nanorod and nanoporous vehicles integrated with an optical antenna for on-demand, photoactivation at ∼650 nm enabling release of payloads into cells including cytotoxic anthracyclines. Together, these provide two approaches, which exploit engineering strategies capable of circumventing distinct resistance barriers and induce killing by multimodal, including nanophotonic mechanisms.
- Published
- 2021
- Full Text
- View/download PDF
25. Two-pion Bose-Einstein correlations in pp collisions at s = 900 GeV
- Author
-
Aamodt, K., Abel, 1 N., Abeysekara, 2 U., Abrahantes Quintana, 3 A., Abramyan, 4 A., Adamova´, 5 D., Aggarwal, 6 M. M., Aglieri Rinella, 7 G., Agocs, 8 A. G., Aguilar Salazar, 9 S., Ahammed, 10 Z., Ahmad, 11 A., Ahmad, 12 N., Ahn, 12 S. U., Akimoto, b. R., Akindinov, 14 A., Aleksandrov, 15 D., Alessandro, 16 B., Alfaro Molina, 17 R., Alici, 10 A., Avin˜a, 18 E. Almara´z., Alme, 10 J., Alt, 19 T., 2, Altini, c. V., Altinpinar, 20 S., Andrei, 21 C., Andronic, 22 A., Anelli, 21 G., Angelov, 8 V., Anson, c. C., Anticˇic´, 23 T., Antinori, 24 F., 8, Antinori, d. S., Antipin, 18 K., Anton´czyk, 25 D., Antonioli, 25 P., Anzo, 26 A., Aphecetche, 10 L., Appelsha¨user, 27 H., Arcelli, 25 S., Arceo, 18 R., Arend, 10 A., Armesto, 25 N., Arnaldi, 28 R., Aronsson, 17 T., Arsene, 29 I. C., 1, Asryan, e. A., Augustinus, 30 A., Averbeck, 8 R., Awes, 21 T. C., A¨ ysto¨, 31 J., Azmi, 32 M. D., Bablok, 12 S., Bach, 19 M., Badala`, 33 A., Baek, 34 Y. W., Bagnasco, b. S., Bailhache, 17 R., Bala, f. R., Baldisseri, 35 A., Baldit, 36 A., Ba´n, 37 J., Barbera, 38 R., Barnafo¨ldi, 39 G. G., Barnby, 9 L. S., Barret, 40 V., Bartke, 37 J., Barile, 41 F., Basile, 20 M., Basmanov, 18 V., Bastid, 42 N., Bathen, 37 B., Batigne, 43 G., Batyunya, 27 B., Baumann, 44 C., Bearden, f. I. G., Becker, 45 B., Belikov, g. I., Bellwied, 47 R., Belmont Moreno, 48 E., Belogianni, 10 A., Benhabib, 49 L., Beole, 27 S., Berceanu, 35 I., Bercuci, 22 A., Berdermann, h. E., Berdnikov, 21 Y., Betev, 50 L., Bhasin, 8 A., Bhati, 51 A. K., Bianchi, 7 L., Bianchi, 35 N., Bianchin, 52 C., Bielcˇı´k, 53 J., Bielcˇı´kova´, 54 J., Bilandzic, 6 A., Bimbot, 55 L., Biolcati, 56 E., Blanc, 35 A., Blanco, 37 F., Blanco, i. F., Blau, 57 D., Blume, 16 C., Boccioli, 25 M., Bock, 8 N., Bogdanov, 23 A., Bøggild, 58 H., Bogolyubsky, 45 M., Bohm, 59 J., Boldizsa´r, 60 L., Bombara, 9 M., Bombonati, 61 C., Bondila, j. M., Borel, 32 H., Borisov, 36 A., Bortolin, 62 C., Bose, k. S., Bosisio, Luciano, Bossu´, 64 F., Botje, 35 M., Bo¨ttger, 55 S., Bourdaud, 2 G., Boyer, 27 B., Braun, 56 M., Braun Munzinger, 30 P., 65, 21, Bravina, c. L., Bregant, Marco, Breitner, l. T., Bruckner, 2 G., Brun, 8 R., Bruna, 8 E., Bruno, 29 G. E., Budnikov, 20 D., Buesching, 42 H., Buncic, 25 P., Busch, 8 O., Buthelezi, 66 Z., Caffarri, 67 D., Cai, 53 X., Caines, 68 H., Calvo, 29 E., Camacho, 69 E., Camerini, Paolo, Campbell, 64 M., Canoa Roman, 8 V., Capitani, 8 G. P., Cara Romeo, 52 G., Carena, 26 F., Carena, 8. W., Carminati, 8 F., Casanova Dı´az, 8 A., Caselle, 52 M., Castillo Castellanos, 8 J., Castillo Hernandez, 36 J. F., Catanescu, 21 V., Cattaruzza, Enrico, Cavicchioli, 64 C., Cerello, 8 P., Chambert, 17 V., Chang, 56 B., Chapeland, 60 S., Charpy, 8 A., Charvet, 56 J. L., Chattopadhyay, 36 S., Chattopadhyay, 63 S., Cherney, 11 M., Cheshkov, 3 C., Cheynis, 8 B., Chiavassa, 71 E., Chibante Barroso, 35 V., Chinellato, 8 D. D., Chochula, 72 P., Choi, 8 K., Chojnacki, 73 M., Christakoglou, 74 P., Christensen, 74 C. H., Christiansen, 45 P., Chujo, 75 T., Chuman, 76 F., Cicalo, 77 C., Cifarelli, 46 L., Cindolo, 18 F., Cleymans, 26 J., Cobanoglu, 67 O., Coffin, 35 J. P., Coli, 47 S., Colla, 17 A., Conesa Balbastre, 8 G., Conesa del Valle, 52 Z., Conner, m. E. S., Constantin, 78 P., Contin, Giacomo, Contreras, j. J. G., Corrales Morales, 70 Y., Cormier, 35 T. M., Cortese, 48 P., Maldonado, 79 I. Corte´s., Cosentino, 80 M. R., Costa, 72 F., Cotallo, 8 M. E., Crescio, 57 E., Crochet, 70 P., Cuautle, 37 E., Cunqueiro, 81 L., Cussonneau, 52 J., Dainese, 27 A., Dalsgaard, 82 H. H., Danu, 45 A., Das, 83 I., Dash, 63 A., Dash, 84 S., de Barros, 84 G. O. V., De Caro, 85 A., de Cataldo, 86 G., de Cuveland, 87 J., De Falco, c. A., De Gaspari, 88 M., de Groot, 66 J., De Gruttola, 8 D., De Marco, 86 N., De Pasquale, 17 S., De Remigis, 86 R., de Rooij, 17 R., de Vaux, 74 G., Delagrange, 67 H., Delgado, 27 Y., Dellacasa, 69 G., Deloff, 79 A., Demanov, 89 V., De´nes, 42 E., Deppman, 9 A., D’Erasmo, 85 G., Derkach, 20 D., Devaux, 30 A., Di Bari, 37 D., Di Giglio, 20 C., Di Liberto, j. S., Di Mauro, 90 A., Di Nezza, 8 P., Dialinas, 52 M., Dı´az, 27 L., Dı´az, 81 R., Dietel, 32 T., Divia`, 43 R., Djuvsland, 8 Ø., Dobretsov, 19 V., Dobrin, 16 A., Dobrowolski, 75 T., Do¨nigus, 89 B., Domı´nguez, 21 I., Don, 81 D. M. M., Dordic, 91 O., Dubey, 1 A. K., Dubuisson, 11 J., Ducroux, 8 L., Dupieux, 71 P., Dutta Majumdar, 37 A. K., Dutta Majumdar, 63 M. R., Elia, 11 D., Emschermann, 87 D., Enokizono, n. A., Espagnon, 31 B., Estienne, 56 M., Esumi, 27 S., Evans, 76 D., Evrard, 40 S., Eyyubova, 8 G., Fabjan, 1 C. W., Fabris, o. D., Faivre, 82 J., Falchieri, 92 D., Fantoni, 18 A., Fasel, 52 M., Fateev, 21 O., Fearick, 44 R., Fedunov, 67 A., Fehlker, 44 D., Fekete, 19 V., Felea, 93 D., Fenton Olsen, 83 B., Feofilov, p. G., Ferna´ndez Te´llez, 30 A., Ferreiro, 80 E. G., Ferretti, 28 A., Ferretti, 35 R., Figueredo, q. M. A. S., Filchagin, 85 S., Fini, 42 R., Fionda, 87 F. M., Fiore, 20 E. M., Floris, 20 M., Fodor, j. Z., Foertsch, 9 S., Foka, 67 P., Fokin, 21 S., Formenti, 16 F., Fragiacomo, 8 E., Fragkiadakis, 94 M., Frankenfeld, 49 U., Frolov, 21 A., Fuchs, 95 U., Furano, 8 F., Furget, 8 C., Fusco Girard, 92 M., Gaardhøje, 86 J. J., Gadrat, 45 S., Gagliardi, 92 M., Gago, 35 A., Gallio, 69 M., Ganoti, 35 P., Ganti, 49 M. S., Garabatos, 11 C., Trapaga, 21 C. Garcı´a., Gebelein, 35 J., Gemme, 2 R., Germain, 79 M., Gheata, 27 A., Gheata, 8 M., Ghidini, 8 B., Ghosh, 20 P., Giraudo, 11 G., Giubellino, 17 P., Gladysz Dziadus, 17 E., Glasow, 41 R., Gla¨ssel, a. P., Glenn, 66 A., Go´mez Jime´nez, 96 R., Gonza´lez Santos, 97 H., Gonza´lez Trueba, 80 L. H., Gonza´lez Zamora, 10 P., Gorbunov, 57 S., Gorbunov, c. Y., Gotovac, 3 S., Gottschlag, 98 H., Grabski, 43 V., Grajcarek, 10 R., Grelli, 66 A., Grigoras, 74 A., Grigoras, 8 C., Grigoriev, 8 V., Grigoryan, 58 A., Grigoryan, 5 S., Grinyov, 44 B., Grion, 62 N., Gros, 94 P., Grosse Oetringhaus, 75 J. F., Grossiord, 8 J. Y., Grosso, Raffaele, Guber, 82 F., Guernane, 99 R., Guerra, 92 C., Guerzoni, 69 B., Gulbrandsen, 18 K., Gulkanyan, 45 H., Gunji, 5 T., Gupta, 14 A., Gupta, 51 R., Gustafsson, 51 H. A., Gutbrod, a. H., Haaland, 21 Ø., Hadjidakis, 19 C., Haiduc, 56 M., Hamagaki, 83 H., Hamar, 14 G., Hamblen, 9 J., Han, 100 B. H., Harris, 101 J. W., Hartig, 29 M., Harutyunyan, 25 A., Hasch, 5 D., Hasegan, 52 D., Hatzifotiadou, 83 D., Hayrapetyan, 26 A., Heide, 5 M., Heinz, 43 M., Helstrup, 29 H., Herghelegiu, 102 A., Herna´ndez, 22 C., Herrera Corral, 21 G., Herrmann, 70 N., Hetland, 66 K. F., Hicks, 102 B., Hiei, 29 A., Hille, 77 P. T., Hippolyte, r. B., Horaguchi, 47 T., Hori, s. Y., Hristov, 14 P., Hrˇivna´cˇova´, 8 I., 56 S., Hu, Huang, 103 M., Huber, 19 S., Humanic, 21 T. J., Hutter, 23 D., Hwang, 33 D. S., Ichou, 101 R., Ilkaev, 27 R., Ilkiv, 42 I., Inaba, 89 M., Innocenti, 76 P. G., Ippolitov, 8 M., Irfan, 16 M., Ivan, 12 C., Ivanov, 74 A., Ivanov, 30 M., Ivanov, 21 V., Iwasaki, 50 T., Jachołkowski, 77 A., Jacobs, 8 P., Jancˇurova´, 104 L., Jangal, 44 S., Janik, 47 R., Jena, 93 C., Jena, 84 S., Jirden, 105 L., Jones, 8 G. T., Jones, 40 P. G., Jovanovic´, 40 P., Jung, 40 H., Jung, 13 W., Jusko, 13 A., Kaidalov, 40 A. B., Kalcher, 15 S., Kalinˇa´k, c. P., Kalisky, 38 M., Kalliokoski, 43 T., Kalweit, 32 A., Kamal, 65 A., Kamermans, 12 R., Kanaki, 74 K., Kang, 19 E., Kang, 13 J. H., Kapitan, 60 J., Kaplin, 6 V., Kapusta, 58 S., Karavichev, 8 O., Karavicheva, 99 T., Karpechev, 99 E., Kazantsev, 99 A., Kebschull, 16 U., Keidel, 2 R., Khan, 78 M. M., Khan, 12 S. A., Khanzadeev, 11 A., Kharlov, 50 Y., Kikola, 59 D., Kileng, 106 B., Kim, 102 D. J., Kim, 32 D. S., Kim, 13 D. W., Kim, 13 H. N., Kim, 13 J., Kim, 59 J. H., Kim, 101 J. S., Kim, 13 M., Kim, 60 S. H., Kim, 13 S., Kim, 101 Y., Kirsch, 60 S., Kisel, 8 I., Kiselev, e. S., Kisiel, 15 A., Klay, j. J. L., Klein, 107 J., Klein Bo¨sing, 66 C., Kliemant, n. M., Klovning, 25 A., Kluge, 19 A., Knichel, 8 M. L., Kniege, 21 S., Koch, 25 K., Kolevatov, 66 R., Kolojvari, 1 A., Kondratiev, 30 V., Kondratyeva, 30 N., Konevskih, 58 A., Kornas´, 99 E., Kour, 41 R., Kowalski, 40 M., Kox, 41 S., Kozlov, 92 K., Kral, 16 J., Kra´lik, l. I., Kramer, 38 F., Kraus, 25 I., Kravcˇa´kova´, e. A., Krawutschke, 61 T., Krivda, 108 M., Krumbhorn, 40 D., Krus, 66 M., Kryshen, 54 E., Krzewicki, 50 M., Kucheriaev, 55 Y., Kuhn, 16 C., Kuijer, 47 P. G., Kumar, 55 L., Kumar, 7 N., Kupczak, 7 R., Kurashvili, 106 P., Kurepin, 89 A., Kurepin, 99 A. N., Kuryakin, 99 A., Kushpil, 42 S., Kushpil, 6 V., Kutouski, 6 M., Kvaerno, 44 H., Kweon, 1 M. J., Kwon, 66 Y., La Rocca, 60 P., Lackner, t. F., de Guevara, 8 P. Ladro´n., Lafage, 57 V., Lal, 56 C., Lara, 51 C., Larsen, 2 D. T., Laurenti, 19 G., Lazzeroni, 26 C., Le Bornec, 40 Y., Le Bris, 56 N., Lee, 27 H., Lee, 73 K. S., Lee, 13 S. C., Lefe`vre, 13 F., Lenhardt, 27 M., Leistam, 27 L., Lehnert, 8 J., Lenti, 25 V., Leo´n, 87 H., Monzo´n, 10 I. Leo´n., Vargas, 97 H. Leo´n., Le´vai, 25 P., 9 X., Li, 103 Y., Li, Lietava, 103 R., Lindal, 40 S., Lindenstruth, 1 V., Lippmann, c. C., Lisa, 8 M. A., Liu, 23 L., Loginov, 19 V., Lohn, 58 S., Lopez, 8 X., Lo´pez Noriega, 37 M., Lo´pez Ramı´rez, 56 R., Lo´pez Torres, 80 E., Løvhøiden, 4 G., Lozea Feijo Soares, 1 A., 85 S., Lu, Lunardon, 103 M., Luparello, 53 G., Luquin, 35 L., Lutz, 27 J. R., 47 K., Ma, 68 R., Ma, Madagodahettige Don, 29 D. M., Maevskaya, 91 A., Mager, 99 M., Mahapatra, j. D. P., Maire, 84 A., Makhlyueva, 47 I., Mal’Kevich, 8 D., Malaev, 15 M., Malagalage, 50 K. J., Maldonado Cervantes, 3 I., Malek, 81 M., Malinina, 56 L., Malkiewicz, u. T., Malzacher, 32 P., Mamonov, 21 A., Manceau, 42 L., Mangotra, 37 L., Manko, 51 V., Manso, 16 F., Manzari, 37 V., Mao, 87 Y., Maresˇ, v. J., Margagliotti, Giacomo, Margotti, 64 A., Marı´n, 26 A., Martashvili, 21 I., Martinengo, 100 P., Martı´nez Herna´ndez, 8 M. I., Martı´nez Davalos, 80 A., Martı´nez Garcı´a, 10 G., Maruyama, 27 Y., Marzari Chiesa, 77 A., Masciocchi, 35 S., Masera, 21 M., Masetti, 35 M., Masoni, 18 A., Massacrier, 46 L., Mastromarco, 71 M., Mastroserio, 87 A., Matthews, j. Z. L., Matyja, 40 A., Mayani, w. D., Mazza, 81 G., Mazzoni, 17 M. A., Meddi, 90 F., Menchaca Rocha, 110 A., Mendez Lorenzo, 10 P., Meoni, 8 M., Mercado Pe´rez, 8 J., Mereu, 66 P., Miake, 17 Y., Michalon, 76 A., Miftakhov, 47 N., Milano, 50 L., Milosevic, 35 J., Minafra, 1 F., Mischke, 20 A., Mis´kowiec, 74 D., Mitu, 21 C., Mizoguchi, 83 K., Mlynarz, 77 J., Mohanty, 48 B., Molnar, 11 L., 9, Mondal, j. M. M., Zetina, 11 L. Montan˜o., Monteno, x. M., Montes, 17 E., Morando, 57 M., Moretto, 53 S., Morsch, 53 A., Moukhanova, 8 T., Muccifora, 16 V., Mudnic, 52 E., Muhuri, 98 S., Mu¨ ller, 11 H., Munhoz, 8 M. G., Munoz, 85 J., Musa, 80 L., Musso, 8 A., Nandi, 17 B. K., Nania, 105 R., Nappi, 26 E., Navach, 87 F., Navin, 20 S., Nayak, 40 T. K., Nazarenko, 11 S., Nazarov, 42 G., Nedosekin, 42 A., Nendaz, 15 F., Newby, 71 J., Nianine, 96 A., Nicassio, 16 M., Nielsen, j. B. S., Nikolaev, 45 S., Nikolic, 16 V., Nikulin, 24 S., Nikulin, 16 V., Nilsen, 50 B. S., Nilsson, 3 M. S., Noferini, 1 F., Nomokonov, 26 P., Nooren, 44 G., Novitzky, 74 N., Nyatha, 32 A., Nygaard, 105 C., Nyiri, 45 A., Nystrand, 1 J., Ochirov, 19 A., Odyniec, 30 G., Oeschler, 104 H., Oinonen, 65 M., Okada, 32 K., Okada, 14 Y., Oldenburg, 77 M., Oleniacz, 8 J., Oppedisano, 106 C., Orsini, 17 F., Ortiz Velasquez, 36 A., Ortona, 81 G., Oskarsson, 35 A., Osmic, 75 F., O¨ sterman, 8 L., Ostrowski, 75 P., Otterlund, 106 I., Otwinowski, 75 J., Øvrebekk, 21 G., Oyama, 19 K., Ozawa, 66 K., Pachmayer, 14 Y., Pachr, 66 M., Padilla, 54 F., Pagano, 35 P., Paic´, 86 G., Painke, 81 F., Pajares, 2 C., Pal, 28 S., Pal, y. S. K., Palaha, 11 A., Palmeri, 40 A., Panse, 34 R., Papikyan, 2 V., Pappalardo, 5 G. S., Park, 34 W. J., Pastircˇa´k, 21 B., Pastore, 38 C., Paticchio, 87 V., Pavlinov, 87 A., Pawlak, 48 T., Peitzmann, 106 T., Pepato, 74 A., Pereira, 82 H., Peressounko, 36 D., Pe´rez, 16 C., Perini, 69 D., Perrino, 8 D., Peryt, j. W., Peschek, 106 J., Pesci, c. A., Peskov, 26 V., Pestov, j. Y., Peters, 95 A. J., Petra´cˇek, 8 V., Petridis, 54 A., Petris, a. M., Petrov, 22 P., Petrovici, 40 M., Petta, 22 C., Peyre´, 39 J., Piano, Stefano, Piccotti, 94 A., Pikna, 17 M., Pillot, 93 P., Pinazza, 27 O., Pinsky, j. L., Pitz, 91 N., Piuz, 25 F., Platt, 8 R., Płoskon´, 40 M., Pluta, 104 J., Pocheptsov, 106 T., Pochybova, z. S., Podesta Lerma, 9 P. L. M., Poggio, 97 F., Poghosyan, 35 M. G., Pola´k, 35 K., Polichtchouk, 109 B., Polozov, 59 P., Polyakov, 15 V., Pommeresch, 50 B., Pop, 19 A., Posa, 22 F., Pospı´sˇil, 20 V., Potukuchi, 54 B., Pouthas, 51 J., Prasad, 56 S. K., Preghenella, 11 R., Prino, t. F., Pruneau, 17 C. A., Pshenichnov, 48 I., Puddu, 99 G., Pujahari, 88 P., Pulvirenti, 105 A., Punin, 39 A., Punin, 42 V., Putisˇ, 42 M., Putschke, 61 J., Quercigh, 29 E., Rachevski, 8 A., Rademakers, 94 A., Radomski, 8 S., Ra¨iha¨, 66 T. S., Rak, 32 J., Rakotozafindrabe, 32 A., Ramello, 36 L., Ramı´rez Reyes, 79 A., Rammler, 70 M., Raniwala, 43 R., Raniwala, 111 S., Ra¨sa¨nen, 111 S. S., Rashevskaya, 32 I., Rath, 94 S., Read, 84 K. F., Real, 100 J. S., Redlich, 92 K., Renfordt, aa R., Reolon, 25 A. R., Reshetin, 52 A., Rettig, 99 F., Revol, c. J. P., Reygers, 8 K., Ricaud, bb H., Riccati, 65 L., Ricci, 17 R. A., Richter, 112 M., Riedler, 19 P., Riegler, 8. W., Riggi, 8 F., Rivetti, 39 A., Rodriguez Cahuantzi, 17 M., Røed, 80 K., Ro¨hrich, 102 D., Roma´n Lo´pez, cc S., Romita, 80 R., Ronchetti, e. F., Rosinsky´, 52 P., Rosnet, 8 P., Rossegger, 37 S., Rossi, 8 A., Roukoutakis, dd F., Rousseau, ee S., Roy, 56 C., Roy, m. P., Rubio Montero, 63 A. J., Rui, Rinaldo, Rusanov, 64 I., Russo, 66 G., Ryabinkin, 86 E., Rybicki, 16 A., Sadovsky, 41 S., Afarˇı´k, 59 K. S. ˇ., Sahoo, 8 R., Saini, 53 J., Saiz, 11 P., Sakata, 8 D., Salgado, 76 C. A., Salgueiro Domingues da Silva, 28 R., Salur, 8 S., Samanta, 104 T., Sambyal, 11 S., Samsonov, 51 V., A´ndor, 50 L. S. ˇ., Sandoval, 38 A., Sano, 10 M., Sano, 76 S., Santo, 14 R., Santoro, 43 R., Sarkamo, 20 J., Saturnini, 32 P., Scapparone, 37 E., Scarlassara, 26 F., Scharenberg, 53 R. P., Schiaua, 113 C., Schicker, 22 R., Schindler, 66 H., Schmidt, 8 C., Schmidt, 21 H. R., Schossmaier, 21 K., Schreiner, 8 S., Schuchmann, 8 S., Schukraft, 25 J., Schutz, 8 Y., Schwarz, 27 K., Schweda, 21 K., Scioli, 66 G., Scomparin, 18 E., Scott, 17 P. A., Segato, 40 G., Semenov, 53 D., Senyukov, 30 S., Seo, 79 J., Serci, 13 S., Serkin, 88 L., Serradilla, 81 E., Sevcenco, 57 A., Sgura, 83 I., Shabratova, 20 G., Shahoyan, 44 R., Sharkov, 8 G., Sharma, 15 N., Sharma, 7 S., Shigaki, 51 K., Shimomura, 77 M., Shtejer, 76 K., Sibiriak, 4 Y., Siciliano, 16 M., Sicking, 35 E., Siddi, ff E., Siemiarczuk, 46 T., Silenzi, 89 A., Silvermyr, 18 D., Simili, 31 E., Simonetti, 74 G., Singaraju, j. R., Singh, 11 R., Singhal, 51 V., Sinha, 11 B. C., Sinha, 11 T., Sitar, 63 B., Sitta, 93 M., Skaali, 79 T. B., Skjerdal, 1 K., Smakal, 19 R., Smirnov, 54 N., Snellings, 29 R., Snow, 55 H., Søgaard, 40 C., Soloviev, 45 A., Soltveit, 59 H. K., Soltz, 66 R., Sommer, 96 W., Son, 25 C. W., Son, 73 H., Song, 101 M., Soos, 60 C., Soramel, 8 F., Soyk, 53 D., Spyropoulou Stassinaki, 21 M., Srivastava, 49 B. K., Stachel, 113 J., Staley, 66 F., Stan, 36 E., Stefanek, 83 G., Stefanini, 89 G., Steinbeck, 8 T., Stenlund, c. E., Steyn, 75 G., Stocco, 67 D., Stock, w. R., Stolpovsky, 25 P., Strmen, 59 P., Suaide, 93 A. A. P., Subieta Va´squez, 85 M. A., Sugitate, 35 T., Suire, 77 C., Umbera, 56 M. S. ˇ., Susa, 6 T., Swoboda, 24 D., Symons, 8 J., Szanto de Toledo, 104 A., Szarka, 85 I., Szostak, 93 A., Szuba, 46 M., Tadel, 106 M., Tagridis, 8 C., Takahara, 49 A., Takahashi, 14 J., Tanabe, 72 R., Tapia Takaki, 76 J. D., Taureg, 56 H., Tauro, 8 A., Tavlet, 8 M., Tejeda Mun˜oz, 8 G., Telesca, 80 A., Terrevoli, 8 C., Tha¨der, 20 J., Tieulent, c. R., Tlusty, 71 D., Toia, 54 A., Tolyhy, 8 T., Torcato de Matos, 9 C., Torii, 8 H., Torralba, 77 G., Toscano, 2 L., Tosello, 17 F., Tournaire, 17 A., Traczyk, gg T., Tribedy, 106 P., Tro¨ger, 11 G., Truesdale, 2 D., Trzaska, 23 W. H., Tsiledakis, 32 G., Tsilis, 66 E., Tsuji, 49 T., Tumkin, 14 A., Turrisi, 42 R., Turvey, 82 A., Tveter, 3 T. S., Tydesjo¨, 1 H., Tywoniuk, 8 K., Ulery, 1 J., Ullaland, 25 K., Uras, 19 A., Urba´n, 88 J., Urciuoli, 61 G. M., Usai, 90 G. L., Vacchi, 88 A., Vala, 94 M., Valencia Palomo, hh L., Vallero, 10 S., van der Kolk, 66 N., Vande Vyvre, 55 P., van Leeuwen, 8 M., Vannucci, 74 L., Vargas, 112 A., Varma, 80 R., Vasiliev, 105 A., Vassiliev, 16 I., Vasileiou, ee M., Vechernin, 49 V., Venaruzzo, Massimo, Vercellin, 64 E., Vergara, 35 S., Vernet, 80 R., Verweij, ii M., Vetlitskiy, 74 I., Vickovic, 15 L., Viesti, 98 G., Vikhlyantsev, 53 O., Vilakazi, 42 Z., Villalobos Baillie, 67 O., Vinogradov, 40 A., Vinogradov, 16 L., Vinogradov, 30 Y., Virgili, 42 T., Viyogi, 86 Y. P., Vodopianov, 11 A., Voloshin, 44 K., Voloshin, 15 S., Volpe, 48 G., von Haller, 20 B., Vranic, 8 D., Vrla´kova´, 21 J., Vulpescu, 61 B., Wagner, 37 B., Wagner, 19 V., Wallet, 54 L., Wan, 8 R., Wang, m. D., Wang, 68 Y., Wang, 66 Y., Watanabe, 68 K., Wen, 76 Q., Wessels, 103 J., Westerhoff, 43 U., Wiechula, 43 J., Wikne, 66 J., Wilk, 1 A., Wilk, 43 G., Williams, 89 M. C. S., Willis, 26 N., Windelband, 56 B., 66 C., Xu, Yang, 68 C., Yang, 68 H., Yasnopolskiy, 66 S., Yermia, 16 F., 27 J., Yi, Yin, 73 Z., Yokoyama, 68 H., Yoo, 76 I. K., Yuan, 73 X., Yurevich, jj V., Yushmanov, 44 I., Zabrodin, 16 E., Zagreev, 1 B., Zalite, 15 A., Zampolli, 50 C., Zanevsky, kk Y. u., Zaporozhets, 44 S., Zarochentsev, 44 A., Za´vada, 30 P., Zbroszczyk, 109 H., Zelnicek, 106 P., Zenin, 2 A., Zepeda, 59 A., Zgura, 70 I., Zhalov, 83 M., Zhang, 50 X., Zhou, b. D., Zhou, 68 S., Zhu, 103 J., Zichichi, 68 A., Zinchenko, t. A., Zinovjev, 44 G., Zoccarato, 62 Y., Zycha´cˇek, 71 V., Zynovyev62, M., K., Aamodt, 1 N., Abel, 2 U., Abeysekara, 3 A., Abrahantes Quintana, 4 A., Abramyan, 5 D., Adamova´, 6 M. M., Aggarwal, 7 G., Aglieri Rinella, 8 A. G., Agoc, 9 S., Aguilar Salazar, 10 Z., Ahammed, 11 A., Ahmad, 12 N., Ahmad, 12 S. U., Ahn, b. R., Akimoto, 14 A., Akindinov, 15 D., Aleksandrov, 16 B., Alessandro, 17 R., Alfaro Molina, 10 A., Alici, 18 E., Almara´z Avin˜a, 10 J., Alme, 19 T., Alt, c. V., Altini, 20 S., Altinpinar, 21 C., Andrei, 22 A., Andronic, 21 G., Anelli, 8 V., Angelov, c. C., Anson, 23 T., Anticˇic´, 24 F., Antinori, d. S., Antinori, 18 K., Antipin, 25 D., Anton´czyk, 25 P., Antonioli, 26 A., Anzo, 10 L., Aphecetche, 27 H., Appelsha¨user, 25 S., Arcelli, 18 R., Arceo, 10 A., Arend, 25 N., Armesto, 28 R., Arnaldi, 17 T., Aronsson, 29 I. C., Arsene, e. A., Asryan, 30 A., Augustinu, 8 R., Averbeck, 21 T. C., Awe, 31 J., A¨ ysto¨, 32 M. D., Azmi, 12 S., Bablok, 19 M., Bach, 33 A., Badala`, 34 Y. W., Baek, b. S., Bagnasco, 17 R., Bailhache, f. R., Bala, 35 A., Baldisseri, 36 A., Baldit, 37 J., Ba´n, 38 R., Barbera, 39 G. G., Barnafo¨ldi, 9 L. S., Barnby, 40 V., Barret, 37 J., Bartke, 41 F., Barile, 20 M., Basile, 18 V., Basmanov, 42 N., Bastid, 37 B., Bathen, 43 G., Batigne, 27 B., Batyunya, 44 C., Baumann, f. I. G., Bearden, 45 B., Becker, g. I., Belikov, 47 R., Bellwied, 48 E., Belmont Moreno, 10 A., Belogianni, 49 L., Benhabib, 27 S., Beole, 35 I., Berceanu, 22 A., Bercuci, h. E., Berdermann, 21 Y., Berdnikov, 50 L., Betev, 8 A., Bhasin, 51 A. K., Bhati, 7 L., Bianchi, 35 N., Bianchi, 52 C., Bianchin, 53 J., Bielcˇı´k, 54 J., Bielcˇı´kova´, 6 A., Bilandzic, 55 L., Bimbot, 56 E., Biolcati, 35 A., Blanc, 37 F., Blanco, i. F., Blanco, 57 D., Blau, 16 C., Blume, 25 M., Boccioli, 8 N., Bock, 23 A., Bogdanov, 58 H., Bøggild, 45 M., Bogolyubsky, 59 J., Bohm, 60 L., Boldizsa´r, 9 M., Bombara, 61 C., Bombonati, j. M., Bondila, 32 H., Borel, 36 A., Borisov, 62 C., Bortolin, k. S., Bose, Bosisio, Luciano, 64 F., Bossu´, 35 M., Botje, 55 S., Bo¨ttger, 2 G., Bourdaud, 27 B., Boyer, 56 M., Braun, 30 P., Braun Munzinger, 21, 65, c. L., Bravina, Bregant, Marco, l. T., Breitner, 2 G., Bruckner, 8 R., Brun, 8 E., Bruna, 29 G. E., Bruno, 20 D., Budnikov, 42 H., Buesching, 25 P., Buncic, 8 O., Busch, 66 Z., Buthelezi, 67 D., Caffarri, 53 X., Cai, 68 H., Caine, 29 E., Calvo, 69 E., Camacho, Camerini, Paolo, 64 M., Campbell, 8 V., Canoa Roman, 8 G. P., Capitani, 52 G., Cara Romeo, 26 F., Carena, Carena, 8. W., 8 F., Carminati, 8 A., Casanova Dı´az, 52 M., Caselle, 8 J., Castillo Castellano, 36 J. F., Castillo Hernandez, 21 V., Catanescu, Cattaruzza, Enrico, 64 C., Cavicchioli, 8 P., Cerello, 17 V., Chambert, 56 B., Chang, 60 S., Chapeland, 8 A., Charpy, 56 J. L., Charvet, 36 S., Chattopadhyay, 63 S., Chattopadhyay, 11 M., Cherney, 3 C., Cheshkov, 8 B., Cheyni, 71 E., Chiavassa, 35 V., Chibante Barroso, 8 D. D., Chinellato, 72 P., Chochula, 8 K., Choi, 73 M., Chojnacki, 74 P., Christakoglou, 74 C. H., Christensen, 45 P., Christiansen, 75 T., Chujo, 76 F., Chuman, 77 C., Cicalo, 46 L., Cifarelli, 18 F., Cindolo, 26 J., Cleyman, 67 O., Cobanoglu, 35 J. P., Coffin, 47 S., Coli, 17 A., Colla, 8 G., Conesa Balbastre, 52 Z., Conesa del Valle, m. E. S., Conner, 78 P., Constantin, Contin, Giacomo, j. J. G., Contrera, 70 Y., Corrales Morale, 35 T. M., Cormier, 48 P., Cortese, 79 I., Corte´s Maldonado, 80 M. R., Cosentino, 72 F., Costa, 8 M. E., Cotallo, 57 E., Crescio, 70 P., Crochet, 37 E., Cuautle, 81 L., Cunqueiro, 52 J., Cussonneau, 27 A., Dainese, 82 H. H., Dalsgaard, 45 A., Danu, 83 I., Da, 63 A., Dash, 84 S., Dash, 84 G. O. V., de Barro, 85 A., De Caro, 86 G., de Cataldo, 87 J., de Cuveland, c. A., De Falco, 88 M., De Gaspari, 66 J., de Groot, 8 D., De Gruttola, 86 N., De Marco, 17 S., De Pasquale, 86 R., De Remigi, 17 R., de Rooij, 74 G., de Vaux, 67 H., Delagrange, 27 Y., Delgado, 69 G., Dellacasa, 79 A., Deloff, 89 V., Demanov, 42 E., De´ne, 9 A., Deppman, 85 G., D’Erasmo, 20 D., Derkach, 30 A., Devaux, 37 D., Di Bari, 20 C., Di Giglio, j. S., Di Liberto, 90 A., Di Mauro, 8 P., Di Nezza, 52 M., Dialina, 27 L., Dı´az, 81 R., Dı´az, 32 T., Dietel, 43 R., Divia`, 8 Ø., Djuvsland, 19 V., Dobretsov, 16 A., Dobrin, 75 T., Dobrowolski, 89 B., Do¨nigu, 21 I., Domı´nguez, 81 D. M. M., Don, 91 O., Dordic, 1 A. K., Dubey, 11 J., Dubuisson, 8 L., Ducroux, 71 P., Dupieux, 37 A. K., Dutta Majumdar, 63 M. R., Dutta Majumdar, 11 D., Elia, 87 D., Emschermann, n. A., Enokizono, 31 B., Espagnon, 56 M., Estienne, 27 S., Esumi, 76 D., Evan, 40 S., Evrard, 8 G., Eyyubova, 1 C. W., Fabjan, o. D., Fabri, 82 J., Faivre, 92 D., Falchieri, 18 A., Fantoni, 52 M., Fasel, 21 O., Fateev, 44 R., Fearick, 67 A., Fedunov, 44 D., Fehlker, 19 V., Fekete, 93 D., Felea, 83 B., Fenton Olsen, p. G., Feofilov, 30 A., Ferna´ndez Te´llez, 80 E. G., Ferreiro, 28 A., Ferretti, 35 R., Ferretti, q. M. A. S., Figueredo, 85 S., Filchagin, 42 R., Fini, 87 F. M., Fionda, 20 E. M., Fiore, 20 M., Flori, j. Z., Fodor, 9 S., Foertsch, 67 P., Foka, 21 S., Fokin, 16 F., Formenti, 8 E., Fragiacomo, 94 M., Fragkiadaki, 49 U., Frankenfeld, 21 A., Frolov, 95 U., Fuch, 8 F., Furano, 8 C., Furget, 92 M., Fusco Girard, 86 J. J., Gaardhøje, 45 S., Gadrat, 92 M., Gagliardi, 35 A., Gago, 69 M., Gallio, 35 P., Ganoti, 49 M. S., Ganti, 11 C., Garabato, 21 C., Garcı´a Trapaga, 35 J., Gebelein, 2 R., Gemme, 79 M., Germain, 27 A., Gheata, 8 M., Gheata, 8 B., Ghidini, 20 P., Ghosh, 11 G., Giraudo, 17 P., Giubellino, 17 E., Gladysz Dziadu, 41 R., Glasow, a. P., Gla¨ssel, 66 A., Glenn, 96 R., Go´mez Jime´nez, 97 H., Gonza´lez Santo, 80 L. H., Gonza´lez Trueba, 10 P., Gonza´lez Zamora, 57 S., Gorbunov, c. Y., Gorbunov, 3 S., Gotovac, 98 H., Gottschlag, 43 V., Grabski, 10 R., Grajcarek, 66 A., Grelli, 74 A., Grigora, 8 C., Grigora, 8 V., Grigoriev, 58 A., Grigoryan, 5 S., Grigoryan, 44 B., Grinyov, 62 N., Grion, 94 P., Gro, 75 J. F., Grosse Oetringhau, 8 J. Y., Grossiord, Grosso, Raffaele, 82 F., Guber, 99 R., Guernane, 92 C., Guerra, 69 B., Guerzoni, 18 K., Gulbrandsen, 45 H., Gulkanyan, 5 T., Gunji, 14 A., Gupta, 51 R., Gupta, 51 H. A., Gustafsson, a. H., Gutbrod, 21 Ø., Haaland, 19 C., Hadjidaki, 56 M., Haiduc, 83 H., Hamagaki, 14 G., Hamar, 9 J., Hamblen, 100 B. H., Han, 101 J. W., Harri, 29 M., Hartig, 25 A., Harutyunyan, 5 D., Hasch, 52 D., Hasegan, 83 D., Hatzifotiadou, 26 A., Hayrapetyan, 5 M., Heide, 43 M., Heinz, 29 H., Helstrup, 102 A., Herghelegiu, 22 C., Herna´ndez, 21 G., Herrera Corral, 70 N., Herrmann, 66 K. F., Hetland, 102 B., Hick, 29 A., Hiei, 77 P. T., Hille, r. B., Hippolyte, 47 T., Horaguchi, s. Y., Hori, 14 P., Hristov, 8 I., Hrˇivna´cˇova´, 56 S., Hu, 103 M., Huang, 19 S., Huber, 21 T. J., Humanic, 23 D., Hutter, 33 D. S., Hwang, 101 R., Ichou, 27 R., Ilkaev, 42 I., Ilkiv, 89 M., Inaba, 76 P. G., Innocenti, 8 M., Ippolitov, 16 M., Irfan, 12 C., Ivan, 74 A., Ivanov, 30 M., Ivanov, 21 V., Ivanov, 50 T., Iwasaki, 77 A., Jachołkowski, 8 P., Jacob, 104 L., Jancˇurova´, 44 S., Jangal, 47 R., Janik, 93 C., Jena, 84 S., Jena, 105 L., Jirden, 8 G. T., Jone, 40 P. G., Jone, 40 P., Jovanovic´, 40 H., Jung, 13 W., Jung, 13 A., Jusko, 40 A. B., Kaidalov, 15 S., Kalcher, c. P., Kalinˇa´k, 38 M., Kalisky, 43 T., Kalliokoski, 32 A., Kalweit, 65 A., Kamal, 12 R., Kamerman, 74 K., Kanaki, 19 E., Kang, 13 J. H., Kang, 60 J., Kapitan, 6 V., Kaplin, 58 S., Kapusta, 8 O., Karavichev, 99 T., Karavicheva, 99 E., Karpechev, 99 A., Kazantsev, 16 U., Kebschull, 2 R., Keidel, 78 M. M., Khan, 12 S. A., Khan, 11 A., Khanzadeev, 50 Y., Kharlov, 59 D., Kikola, 106 B., Kileng, 102 D. J., Kim, 32 D. S., Kim, 13 D. W., Kim, 13 H. N., Kim, 13 J., Kim, 59 J. H., Kim, 101 J. S., Kim, 13 M., Kim, 60 S. H., Kim, 13 S., Kim, 101 Y., Kim, 60 S., Kirsch, 8 I., Kisel, e. S., Kiselev, 15 A., Kisiel, j. J. L., Klay, 107 J., Klein, 66 C., Klein Bo¨sing, n. M., Kliemant, 25 A., Klovning, 19 A., Kluge, 8 M. L., Knichel, 21 S., Kniege, 25 K., Koch, 66 R., Kolevatov, 1 A., Kolojvari, 30 V., Kondratiev, 30 N., Kondratyeva, 58 A., Konevskih, 99 E., Kornas´, 41 R., Kour, 40 M., Kowalski, 41 S., Kox, 92 K., Kozlov, 16 J., Kral, l. I., Kra´lik, 38 F., Kramer, 25 I., Krau, e. A., Kravcˇa´kova´, 61 T., Krawutschke, 108 M., Krivda, 40 D., Krumbhorn, 66 M., Kru, 54 E., Kryshen, 50 M., Krzewicki, 55 Y., Kucheriaev, 16 C., Kuhn, 47 P. G., Kuijer, 55 L., Kumar, 7 N., Kumar, 7 R., Kupczak, 106 P., Kurashvili, 89 A., Kurepin, 99 A. N., Kurepin, 99 A., Kuryakin, 42 S., Kushpil, 6 V., Kushpil, 6 M., Kutouski, 44 H., Kvaerno, 1 M. J., Kweon, 66 Y., Kwon, 60 P., La Rocca, t. F., Lackner, 8 P., Ladro´n de Guevara, 57 V., Lafage, 56 C., Lal, 51 C., Lara, 2 D. T., Larsen, 19 G., Laurenti, 26 C., Lazzeroni, 40 Y., Le Bornec, 56 N., Le Bri, 27 H., Lee, 73 K. S., Lee, 13 S. C., Lee, 13 F., Lefe`vre, 27 M., Lenhardt, 27 L., Leistam, 8 J., Lehnert, 25 V., Lenti, 87 H., Leo´n, 10 I., Leo´n Monzo´n, 97 H., Leo´n Varga, 25 P., Le´vai, 9 X., Li, 103 Y., Li, 103 R., Lietava, 40 S., Lindal, 1 V., Lindenstruth, c. C., Lippmann, 8 M. A., Lisa, 23 L., Liu, 19 V., Loginov, 58 S., Lohn, 8 X., Lopez, 37 M., Lo´pez Noriega, 56 R., Lo´pez Ramı´rez, 80 E., Lo´pez Torre, 4 G., Løvhøiden, 1 A., Lozea Feijo Soare, 85 S., Lu, 103 M., Lunardon, 53 G., Luparello, 35 L., Luquin, 27 J. R., Lutz, 47 K., Ma, 68 R., Ma, 29 D. M., Madagodahettige Don, 91 A., Maevskaya, 99 M., Mager, j. D. P., Mahapatra, 84 A., Maire, 47 I., Makhlyueva, 8 D., Mal’Kevich, 15 M., Malaev, 50 K. J., Malagalage, 3 I., Maldonado Cervante, 81 M., Malek, 56 L., Malinina, u. T., Malkiewicz, 32 P., Malzacher, 21 A., Mamonov, 42 L., Manceau, 37 L., Mangotra, 51 V., Manko, 16 F., Manso, 37 V., Manzari, 87 Y., Mao, v. J., Maresˇ, Margagliotti, Giacomo, 64 A., Margotti, 26 A., Marı´n, 21 I., Martashvili, 100 P., Martinengo, 8 M. I., Martı´nez Herna´ndez, 80 A., Martı´nez Davalo, 10 G., Martı´nez Garcı´a, 27 Y., Maruyama, 77 A., Marzari Chiesa, 35 S., Masciocchi, 21 M., Masera, 35 M., Masetti, 18 A., Masoni, 46 L., Massacrier, 71 M., Mastromarco, 87 A., Mastroserio, j. Z. L., Matthew, 40 A., Matyja, w. D., Mayani, 81 G., Mazza, 17 M. A., Mazzoni, 90 F., Meddi, 110 A., Menchaca Rocha, 10 P., Mendez Lorenzo, 8 M., Meoni, 8 J., Mercado Pe´rez, 66 P., Mereu, 17 Y., Miake, 76 A., Michalon, 47 N., Miftakhov, 50 L., Milano, 35 J., Milosevic, 1 F., Minafra, 20 A., Mischke, 74 D., Mis´kowiec, 21 C., Mitu, 83 K., Mizoguchi, 77 J., Mlynarz, 48 B., Mohanty, 11 L., Molnar, j. M. M., Mondal, 11 L., Montan˜o Zetina, x. M., Monteno, 17 E., Monte, 57 M., Morando, 53 S., Moretto, 53 A., Morsch, 8 T., Moukhanova, 16 V., Muccifora, 52 E., Mudnic, 98 S., Muhuri, 11 H., Mu¨ ller, 8 M. G., Munhoz, 85 J., Munoz, 80 L., Musa, 8 A., Musso, 17 B. K., Nandi, 105 R., Nania, 26 E., Nappi, 87 F., Navach, 20 S., Navin, 40 T. K., Nayak, 11 S., Nazarenko, 42 G., Nazarov, 42 A., Nedosekin, 15 F., Nendaz, 71 J., Newby, 96 A., Nianine, 16 M., Nicassio, j. B. S., Nielsen, 45 S., Nikolaev, 16 V., Nikolic, 24 S., Nikulin, 16 V., Nikulin, 50 B. S., Nilsen, 3 M. S., Nilsson, 1 F., Noferini, 26 P., Nomokonov, 44 G., Nooren, 74 N., Novitzky, 32 A., Nyatha, 105 C., Nygaard, 45 A., Nyiri, 1 J., Nystrand, 19 A., Ochirov, 30 G., Odyniec, 104 H., Oeschler, 65 M., Oinonen, 32 K., Okada, 14 Y., Okada, 77 M., Oldenburg, 8 J., Oleniacz, 106 C., Oppedisano, 17 F., Orsini, 36 A., Ortiz Velasquez, 81 G., Ortona, 35 A., Oskarsson, 75 F., Osmic, 8 L., O¨ sterman, 75 P., Ostrowski, 106 I., Otterlund, 75 J., Otwinowski, 21 G., Øvrebekk, 19 K., Oyama, 66 K., Ozawa, 14 Y., Pachmayer, 66 M., Pachr, 54 F., Padilla, 35 P., Pagano, 86 G., Paic´, 81 F., Painke, 2 C., Pajare, 28 S., Pal, y. S. K., Pal, 11 A., Palaha, 40 A., Palmeri, 34 R., Panse, 2 V., Papikyan, 5 G. S., Pappalardo, 34 W. J., Park, 21 B., Pastircˇa´k, 38 C., Pastore, 87 V., Paticchio, 87 A., Pavlinov, 48 T., Pawlak, 106 T., Peitzmann, 74 A., Pepato, 82 H., Pereira, 36 D., Peressounko, 16 C., Pe´rez, 69 D., Perini, 8 D., Perrino, j. W., Peryt, 106 J., Peschek, c. A., Pesci, 26 V., Peskov, j. Y., Pestov, 95 A. J., Peter, 8 V., Petra´cˇek, 54 A., Petridi, a. M., Petri, 22 P., Petrov, 40 M., Petrovici, 22 C., Petta, 39 J., Peyre´, Piano, Stefano, 94 A., Piccotti, 17 M., Pikna, 93 P., Pillot, 27 O., Pinazza, j. L., Pinsky, 91 N., Pitz, 25 F., Piuz, 8 R., Platt, 40 M., Płoskon´, 104 J., Pluta, 106 T., Pocheptsov, z. S., Pochybova, 9 P. L. M., Podesta Lerma, 97 F., Poggio, 35 M. G., Poghosyan, 35 K., Pola´k, 109 B., Polichtchouk, 59 P., Polozov, 15 V., Polyakov, 50 B., Pommeresch, 19 A., Pop, 22 F., Posa, 20 V., Pospı´sˇil, 54 B., Potukuchi, 51 J., Poutha, 56 S. K., Prasad, 11 R., Preghenella, t. F., Prino, 17 C. A., Pruneau, 48 I., Pshenichnov, 99 G., Puddu, 88 P., Pujahari, 105 A., Pulvirenti, 39 A., Punin, 42 V., Punin, 42 M., Putisˇ, 61 J., Putschke, 29 E., Quercigh, 8 A., Rachevski, 94 A., Rademaker, 8 S., Radomski, 66 T. S., Ra¨iha¨, 32 J., Rak, 32 A., Rakotozafindrabe, 36 L., Ramello, 79 A., Ramı´rez Reye, 70 M., Rammler, 43 R., Raniwala, 111 S., Raniwala, 111 S. S., Ra¨sa¨nen, 32 I., Rashevskaya, 94 S., Rath, 84 K. F., Read, 100 J. S., Real, 92 K., Redlich, aa R., Renfordt, 25 A. R., Reolon, 52 A., Reshetin, 99 F., Rettig, c. J. P., Revol, 8 K., Reyger, bb H., Ricaud, 65 L., Riccati, 17 R. A., Ricci, 112 M., Richter, 19 P., Riedler, Riegler, 8. W., 8 F., Riggi, 39 A., Rivetti, 17 M., Rodriguez Cahuantzi, 80 K., Røed, 102 D., Ro¨hrich, cc S., Roma´n Lo´pez, 80 R., Romita, e. F., Ronchetti, 52 P., Rosinsky´, 8 P., Rosnet, 37 S., Rossegger, 8 A., Rossi, dd F., Roukoutaki, ee S., Rousseau, 56 C., Roy, m. P., Roy, 63 A. J., Rubio Montero, Rui, Rinaldo, 64 I., Rusanov, 66 G., Russo, 86 E., Ryabinkin, 16 A., Rybicki, 41 S., Sadovsky, 59 K. S. ˇ., Afarˇı´k, 8 R., Sahoo, 53 J., Saini, 11 P., Saiz, 8 D., Sakata, 76 C. A., Salgado, 28 R., Salgueiro Domingues da Silva, 8 S., Salur, 104 T., Samanta, 11 S., Sambyal, 51 V., Samsonov, 50 L. S. ˇ., A´ndor, 38 A., Sandoval, 10 M., Sano, 76 S., Sano, 14 R., Santo, 43 R., Santoro, 20 J., Sarkamo, 32 P., Saturnini, 37 E., Scapparone, 26 F., Scarlassara, 53 R. P., Scharenberg, 113 C., Schiaua, 22 R., Schicker, 66 H., Schindler, 8 C., Schmidt, 21 H. R., Schmidt, 21 K., Schossmaier, 8 S., Schreiner, 8 S., Schuchmann, 25 J., Schukraft, 8 Y., Schutz, 27 K., Schwarz, 21 K., Schweda, 66 G., Scioli, 18 E., Scomparin, 17 P. A., Scott, 40 G., Segato, 53 D., Semenov, 30 S., Senyukov, 79 J., Seo, 13 S., Serci, 88 L., Serkin, 81 E., Serradilla, 57 A., Sevcenco, 83 I., Sgura, 20 G., Shabratova, 44 R., Shahoyan, 8 G., Sharkov, 15 N., Sharma, 7 S., Sharma, 51 K., Shigaki, 77 M., Shimomura, 76 K., Shtejer, 4 Y., Sibiriak, 16 M., Siciliano, 35 E., Sicking, ff E., Siddi, 46 T., Siemiarczuk, 89 A., Silenzi, 18 D., Silvermyr, 31 E., Simili, 74 G., Simonetti, j. R., Singaraju, 11 R., Singh, 51 V., Singhal, 11 B. C., Sinha, 11 T., Sinha, 63 B., Sitar, 93 M., Sitta, 79 T. B., Skaali, 1 K., Skjerdal, 19 R., Smakal, 54 N., Smirnov, 29 R., Snelling, 55 H., Snow, 40 C., Søgaard, 45 A., Soloviev, 59 H. K., Soltveit, 66 R., Soltz, 96 W., Sommer, 25 C. W., Son, 73 H., Son, 101 M., Song, 60 C., Soo, 8 F., Soramel, 53 D., Soyk, 21 M., Spyropoulou Stassinaki, 49 B. K., Srivastava, 113 J., Stachel, 66 F., Staley, 36 E., Stan, 83 G., Stefanek, 89 G., Stefanini, 8 T., Steinbeck, c. E., Stenlund, 75 G., Steyn, 67 D., Stocco, w. R., Stock, 25 P., Stolpovsky, 59 P., Strmen, 93 A. A. P., Suaide, 85 M. A., Subieta Va´squez, 35 T., Sugitate, 77 C., Suire, 56 M. S. ˇ., Umbera, 6 T., Susa, 24 D., Swoboda, 8 J., Symon, 104 A., Szanto de Toledo, 85 I., Szarka, 93 A., Szostak, 46 M., Szuba, 106 M., Tadel, 8 C., Tagridi, 49 A., Takahara, 14 J., Takahashi, 72 R., Tanabe, 76 J. D., Tapia Takaki, 56 H., Taureg, 8 A., Tauro, 8 M., Tavlet, 8 G., Tejeda Mun˜oz, 80 A., Telesca, 8 C., Terrevoli, 20 J., Tha¨der, c. R., Tieulent, 71 D., Tlusty, 54 A., Toia, 8 T., Tolyhy, 9 C., Torcato de Mato, 8 H., Torii, 77 G., Torralba, 2 L., Toscano, 17 F., Tosello, 17 A., Tournaire, gg T., Traczyk, 106 P., Tribedy, 11 G., Tro¨ger, 2 D., Truesdale, 23 W. H., Trzaska, 32 G., Tsiledaki, 66 E., Tsili, 49 T., Tsuji, 14 A., Tumkin, 42 R., Turrisi, 82 A., Turvey, 3 T. S., Tveter, 1 H., Tydesjo¨, 8 K., Tywoniuk, 1 J., Ulery, 25 K., Ullaland, 19 A., Ura, 88 J., Urba´n, 61 G. M., Urciuoli, 90 G. L., Usai, 88 A., Vacchi, 94 M., Vala, hh L., Valencia Palomo, 10 S., Vallero, 66 N., van der Kolk, 55 P., Vande Vyvre, 8 M., van Leeuwen, 74 L., Vannucci, 112 A., Varga, 80 R., Varma, 105 A., Vasiliev, 16 I., Vassiliev, ee M., Vasileiou, 49 V., Vechernin, Venaruzzo, Massimo, 64 E., Vercellin, 35 S., Vergara, 80 R., Vernet, ii M., Verweij, 74 I., Vetlitskiy, 15 L., Vickovic, 98 G., Viesti, 53 O., Vikhlyantsev, 42 Z., Vilakazi, 67 O., Villalobos Baillie, 40 A., Vinogradov, 16 L., Vinogradov, 30 Y., Vinogradov, 42 T., Virgili, 86 Y. P., Viyogi, 11 A., Vodopianov, 44 K., Voloshin, 15 S., Voloshin, 48 G., Volpe, 20 B., von Haller, 8 D., Vranic, 21 J., Vrla´kova´, 61 B., Vulpescu, 37 B., Wagner, 19 V., Wagner, 54 L., Wallet, 8 R., Wan, m. D., Wang, 68 Y., Wang, 66 Y., Wang, 68 K., Watanabe, 76 Q., Wen, 103 J., Wessel, 43 U., Westerhoff, 43 J., Wiechula, 66 J., Wikne, 1 A., Wilk, 43 G., Wilk, 89 M. C. S., William, 26 N., Willi, 56 B., Windelband, 66 C., Xu, 68 C., Yang, 68 H., Yang, 66 S., Yasnopolskiy, 16 F., Yermia, 27 J., Yi, 73 Z., Yin, 68 H., Yokoyama, 76 I. K., Yoo, 73 X., Yuan, jj V., Yurevich, 44 I., Yushmanov, 16 E., Zabrodin, 1 B., Zagreev, 15 A., Zalite, 50 C., Zampolli, Zanevsky, kk Y. u., 44 S., Zaporozhet, 44 A., Zarochentsev, 30 P., Za´vada, 109 H., Zbroszczyk, 106 P., Zelnicek, 2 A., Zenin, 59 A., Zepeda, 70 I., Zgura, 83 M., Zhalov, 50 X., Zhang, b. D., Zhou, 68 S., Zhou, 103 J., Zhu, 68 A., Zichichi, t. A., Zinchenko, 44 G., Zinovjev, 62 Y., Zoccarato, 71 V., Zycha´cˇek, and M., Zynovyev62
- Subjects
ALICE ,LHC ,Bose-Einstein - Abstract
We report on the measurement of two-pion correlation functions from pp collisions at s= 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown–Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.
- Published
- 2010
26. Dissociative double ionization of CO2: dynamics, energy levels and lifetime
- Author
-
Sharma, V., Bapat, B., Mondal, J., Hochlaf, M., Giri, K., Sathyamurthy, N., Laboratoire de Chimie Théorique (LCT), and Université Paris-Est Marne-la-Vallée (UPEM)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
27. Multiferroic behavior of lanthanum orthoferrite (LaFeO 3)
- Author
-
Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., and Chakrabarti, P.K.
- Published
- 2010
- Full Text
- View/download PDF
28. Influence of Starling’s Hypothesis and Joule Heating on Peristaltic Flow of an Electrically Conducting Casson Fluid in a Permeable Microvessel.
- Author
-
Sutradhar, A., Mondal, J. K., Murthy, P. V. S. N., and Gorla, Rama Subba Reddy
- Subjects
RESISTANCE heating ,PERISTALSIS ,BLOOD ,REYNOLDS number ,NONLINEAR equations ,ELECTRIC conductivity - Abstract
Peristaltic transport of electrically conducting blood through a permeable microvessel is investigated by considering the Casson model in the presence of an external magnetic field. The reabsorption process across the permeable microvessel wall is regarded to govern by Starling’s hypothesis. Under the long wavelength approximation and low- Reynolds number assumption, the nonlinear governing equations along with the boundary conditions are solved using a perturbation technique. Starling's hypothesis at the microvessel wall provides a second-order ordinary differential equation to be solved numerically for pressure distribution which in turn gives the stream function and temperature field. Also, the location of the interface between the plug and core regions is obtained from the axial velocity. Due to an increasing reabsorption process, the axial velocity is found to increase initially but decreases near the outlet. The temperature is appreciably intensified by virtue of the Joule heating produced due to the electrical conductivity of blood. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
29. Solving web-choreographic problem using cooperative and fussion based intelligence system.
- Author
-
Bramha, M., Mitra, A., and Mondal, J.
- Published
- 2014
- Full Text
- View/download PDF
30. A vector approach for noise parameter fitting and selection of source admittances
- Author
-
O'Callaghan Castellà, Juan Manuel, Mondal, J. P., Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. RF&MW - Grup de Recerca de sistemes, dispositius i materials de RF i microones
- Subjects
electric admittance ,Soroll elèctric ,electric noise measurement ,Electric noise ,Microwave measurements ,Mesurament de microones ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Circuits de microones, radiofreqüència i ones mil·limètriques [Àrees temàtiques de la UPC] ,Physics::Classical Physics ,measurement errors - Abstract
Simple vector concepts can be used in the determination of noise parameters from measured data. The use of such concepts leads to a simplification in the least-square fitting algorithm, complete determination of the admittance loci that produce ill conditioning, and simple criteria for the selection of source admittances that minimize the sensitivity of the noise parameters to experimental error. The sensitivity of the noise parameters to small perturbations in the reflection coefficients is compared for a group of source admittances presented in previous work. The results show that a great reduction in the error of the noise parameters can be achieved by properly selecting the source admittances.
- Published
- 1991
31. Ingot Niobium RF Cavity Design and Development at BARC.
- Author
-
Mittal, K. C., Mondal, J., Ghatak, S., Dhavale, A. S., Ghodke, S. R., Vohra, R. S., Jawale, S. B., Dutta, D., Pujari, P. K., Saha, T. K., and Bapat, A. V.
- Subjects
- *
NIOBIUM , *INGOTS , *RADIO frequency , *TRANSMUTATION (Chemistry) , *RADIOACTIVE wastes , *POSITRON annihilation , *SUPERCONDUCTIVITY - Abstract
This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the ADSS project. The design and fabrication of f = 1050 MHz, β = 0.49 with Ingot niobium will be presented. Positron annihilation studies are conducted on small samples of ingot niobium to understand the defect depth profile of the niobium surface. The results are presented here. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
32. Intense Relativistic Electron beam diode in presence of Prepulse.
- Author
-
Roy, Amitava, Mondal, J., Menon, R., Mitra, S., Kumar, D. D. P., Sharma, Archana, Mittal, K. C., Nagesh, K.V., and Chakravarthy, D. P.
- Published
- 2007
- Full Text
- View/download PDF
33. Radio on module (RoM): integrating RF systems on organic substrate.
- Author
-
Das, A., Tungare, A., Croswell, R., Bowles, P., Mondal, J., and Kaczman, D.
- Published
- 2004
- Full Text
- View/download PDF
34. Performance review of integrated CMOS VCO circuits for wireless communications.
- Author
-
Rachedine, M., Kaczman, D., Das, A., Shah, M., Mondal, J., and Shurboff, C.
- Published
- 2003
- Full Text
- View/download PDF
35. Review of SiGe process technology and its impact on RFIC design.
- Author
-
Das, A., Huang, M., Mondal, J., Kaczman, D., Shurboff, C., and Cosentino, S.
- Published
- 2002
- Full Text
- View/download PDF
36. Applications of virtual modeling to the development of a 39 GHz MMIC transceiver on multilayer Multi Chip Assembly (MCA) substrate.
- Author
-
Mondal, J., Bogus, E., Ahmed, S., Dietz, G., Sahm, P., Nguyen, T., and Yusim, M.
- Published
- 2000
- Full Text
- View/download PDF
37. Beam dynamics studies and parametric characterization of a standing wave electron linac.
- Author
-
Dash, R., Mondal, J., Sharma, A., and Mittal, K. C.
- Published
- 2013
- Full Text
- View/download PDF
38. Corrective Dome Osteotomy Using the Paratricipital (Triceps-sparing) Approach for Cubitus Varus Deformity in Children.
- Author
-
Banerjee S, Sabui KK, Mondal J, Raj SJ, and Pal DK
- Published
- 2012
- Full Text
- View/download PDF
39. 77 GHz MMIC T/R module for diplex radar application in collision avoidance radar (CAR).
- Author
-
Mondal, J., Wong, K., Richardson, D., Vu, K., Peterson, K., Dietz, G., Haubenstricker, R., Calanca, N., Gluck, L., and Moghe, S.
- Published
- 1998
- Full Text
- View/download PDF
40. Ka- and W-band MMICs on microwave and millimeterwave device arrays (MMDA) using 0.1 /spl mu/m T-gate PHEMT.
- Author
-
Mondal, J., Dietz, G., Peterson, K., Haubenstricker, R., McReynolds, K., Laux, P., Moghe, S., Rice, P., and Aina, L.
- Published
- 1997
- Full Text
- View/download PDF
41. A highly integrated multifunction macro synthesizer chip (MMSC) for applications in 2-18 GHz synthesized sources.
- Author
-
Mondal, J., Peterson, K., Wong, K., Vu, K., Consolazio, S., Geske, S., Blubaugh, J., Guthrie, W., Dietz, G., Haubenstricker, R., Fudem, H., and Moghe, S.
- Published
- 1996
- Full Text
- View/download PDF
42. MESFET MMIC Ka-band transmitter performance for high volume system applications.
- Author
-
Mondal, J., Becker, R., Geddes, J., Contolatis, T., Vickberg, M., Carlson, D., Bounnak, S., Anderson, C., and Sokolov, V.
- Published
- 1991
- Full Text
- View/download PDF
43. Multiferroic behavior of lanthanum orthoferrite (LaFeO3)
- Author
-
Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., and Chakrabarti, P.K.
- Subjects
- *
FERROELECTRICITY , *LANTHANUM compounds , *FERRITES , *SOLID state chemistry , *CRYSTALLOGRAPHY , *X-ray diffractometers , *MAGNETIC susceptibility , *TEMPERATURE effect - Abstract
Abstract: LaFeO3 was prepared by solid state reaction method using Fe2O3 and La2O3 as starting materials. The crystallographic phase of the LaFeO3 has been confirmed by X-ray diffractograms. Magnetic mass susceptibilities (χ m) of the sample at different magnetic fields have been measured in the temperature range of 300–14K. Thermal variations of χ m and the observed ac magnetic hysteresis loop indicate the presence of magnetic ordering in LaFeO3. Ferroelectric hysteresis loop observed at room temperature indicates the presence of ferroelectric ordering in LaFeO3. Measured values of dielectric constant in the presence and absence of magnetic field confirmed that LaFeO3 is multiferroic. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
44. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.
- Author
-
Menon, Rakhee, Roy, Amitava, Mitra, S., Sharma, A., Mondal, J., Mittal, K. C., Nagesh, K. V., and Chakravarthy, D. P.
- Subjects
X-rays ,RELATIVISTIC particles ,ELECTRON beams ,TANTALUM ,BREMSSTRAHLUNG - Abstract
Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm
2 current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO4 :Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance ∼1/xn , where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns. [ABSTRACT FROM AUTHOR]- Published
- 2008
- Full Text
- View/download PDF
45. Characterization and analysis of a pulse power system based on Marx generator and Blumlein.
- Author
-
Durga Praveen Kumar, D., Mitra, S., Senthil, K., Sharma, Archana, Nagesh, K. V., Singh, S. K., Mondal, J., Roy, Amitava, and Chakravarthy, D. P.
- Subjects
PULSED power systems ,ELECTRIC inductance ,ELECTRODYNAMICS ,ELECTRIC resistance ,ELECTRIC resistors - Abstract
A pulse power system (1 MV, 50 kA, and 100 ns) based on Marx generator and Blumlein pulse forming line has been studied for characterization of a general system. Total erected Marx inductance and series resistance are calculated from modular testing of Marx generator and testing of Marx generator with Blumlein. The complete pulse power system has been tested with the termination of a liquid resistor load for finding the Blumlein characteristic impedance. Equivalent electrical circuits during the charging and discharging of the Blumlein are constructed from the characterized parameters of the system. These equivalent circuits can be used in the analysis of prepulse voltage and droop in the flat top of the main pulse in the pulse power systems based on Marx generator and Blumlein. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
46. Magnetic, thermal and hyperfine behaviours of Tm3+ in TmPO4, YPO4 and LuPO4: a comparative study.
- Author
-
Chakrabarti, P. K., Chattopadhyay, K. n., Modak, S., and Mondal, J.
- Subjects
THULIUM ,PHOSPHATES ,CRYSTAL field theory ,MAGNETIC susceptibility ,ANISOTROPY ,HYPERFINE structure - Abstract
Single crystals of thulium phosphates (TmPO
4 ) are grown and the principal magnetic susceptibility perpendicular to the symmetry axis ‘c’ of the crystal $$\left( {{\text{ $ \chi $ }}_ \bot } \right)$$ and the magnetic anisotropy $$\Delta {\text{ $ \chi $ }}\left( {{\text{ = $ \chi $ }}_\parallel - {\text{ $ \chi $ }}_ \bot } \right)$$ are measured in the temperature range 300–13.5 K and 300–80 K, respectively. Though $${\text{ $ \chi $ }}_ \bot $$ increases rapidly with the decrease of temperature, $${\text{ $ \chi $ }}_\parallel $$ increases very slowly with the lowering of temperature. The tetragonal crystal structure of TmPO4 is similar to that of Tm3+ in YPO4 and LuPO4 and in all the cases the non-Kramers Tm3+ ion occupies a site of D2d symmetry. Our observed magnetic data on TmPO4 are analyzed using crystal field analysis where the Hamiltonian includes the atomic free ion and crystal field (one-electron) interaction term. The computed and measured paramagnetic susceptibilities of TmPO4 agree very well in the temperature range of our study. The magnetic behaviours of Tm3+ in YPO4 and LuPO4 are also studied and the results are compared with that of TmPO4 . In all the cases the natures of thermal variations of average susceptibilities and magnetic anisotropies are mostly governed by the perpendicular susceptibilities as their values are higher and rapidly increase with the lowering of temperature compared to parallel susceptibilities. The computed nuclear quadruple splittings, electronic heat capacities of Tm3+ in three different hosts give some interesting results. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
47. Femtosecond Transient Absorption Studies in Cadmium Selenide Nanocrystal Thin Films Prepared by Chemical Bath Deposition Method.
- Author
-
Rath, M. C., Mondal, J. A., Palit, D. K., Mukherjee, T., and Ghosh, H. N.
- Subjects
- *
CRYSTALS , *OPTICAL properties , *ABSORPTION , *DYES & dyeing , *SPECTRUM analysis - Abstract
Dynamics of photo-excited carrier relaxation processes in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method have been studied by nondegenerate femtosecond transient pump-probe spectroscopy. The carriers were generated by exciting at 400nm laser light and monitored by several other wavelengths. The induced absorption followed by a fast bleach recovery observed near and above the bandgap indicates that the photo-excited carriers (electrons) are first trapped by the available traps and then the trapped electrons absorb the probe light to show a delayed absorption process. The transient decay kinetics was found to be multiexponential in nature. The short time constant, <1 picosecond, was attributed to the trapping of electrons by the surface and/or deep traps and the long time constant, =20 picoseconds, was due to the recombination of the trapped carriers. A very little difference in the relaxation processes was observed in the samples prepared at bath temperatures from 25°C to 60°C. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
48. High power RF conditioning of 2856 MHz, 40 keV prototype buncher cavity system.
- Author
-
Mondal, J., Chandan, Shiv, Tillu, A. R., Parashar, S., Jayapraksh, D., Mishra, R. L., Chaudhary, N., Yadav, V., Ghodke, S. R., Dixit, K. P., Mittal, K. C., and Gantayet, L. M.
- Published
- 2014
- Full Text
- View/download PDF
49. Dispersion relation for planar rippled wall backward wave oscillator driven by sheet electron beam.
- Author
-
Gokhale, A., Mondal, J., Mittal, K. C., Choyal, Y., and Maheshwari, K. P.
- Subjects
- *
DISPERSION relations , *CAUSALITY (Physics) , *NUCLEAR physics , *QUANTUM theory , *ELECTRON beams , *THERMODYNAMICS - Abstract
A dispersion relation is derived for an intense sheet electron beam driven by planar rippled wall slow wave structure. The dispersion characteristics of the interaction, such as the linear instability growth rate and spatial growth rate, are also analyzed numerically. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
50. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.
- Author
-
Mondal, J., Menon, R., Roy, Amitava, Mitra, S., Kumar, D.D.P., Sharma, Archana, Mittal, K.C., Nagesh, K.V., and Chakravarthy, D.P.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.