22 results on '"Miguel Angel Castillo-Santiago"'
Search Results
2. Cambio de uso del suelo en la cuenca del río Sabinal, Chiapas, México/Land-use change in the Sabinal river watershed, Chiapas, Mexico
- Author
-
Mercedes Concepción Gordillo-Ruiz and Miguel Angel Castillo-Santiago
- Subjects
Chiapas ,cambio en la cobertura del suelo ,urbanización ,deforestación ,migración rural ,Agriculture - Abstract
. Con el propósito de conocer que los factores promueven el cambio en la cobertura del suelo en la cuenca del río Sabinal, Chiapas, este trabajo analiza la relación entre mapas de cambio en la cobertura del suelo y estadísticas socioeconómicas. Se elaboraron mapas de la cobertura del suelo de 1992 y 2009 con imágenes satelitales de alta resolución; también se colectaron y analizaron datos socioeconómicos relacionados con el uso del suelo. La comparación de los mapas muestra que la tasa de deforestación es del 0.5 %, la cual es más baja que la reportada en otras zonas de bosque tropical seco; la población rural se ha mantenido a niveles similares de 1990, pero la población urbana creció más del doble. La supercie promedio de potreros por productor se ha duplicado, pero la de cultivos se mantiene similar a 1992, ya que los campesinos prerieron sistemas de producción extensivos. Los terrenos agrícolas han disminuido en extensión y se han desplazado a zonas de mayor pendiente debido a la expansión de las áreas urbanas. Se encontró una alta dependencia de insumos de otras regiones del país, pero la producción de alimentos básicos en la cuenca se ha mantenido a niveles de 1991.
- Published
- 2017
- Full Text
- View/download PDF
3. How effective are biodiversity conservation payments in Mexico?
- Author
-
Sébastien Costedoat, Esteve Corbera, Driss Ezzine-de-Blas, Jordi Honey-Rosés, Kathy Baylis, and Miguel Angel Castillo-Santiago
- Subjects
Medicine ,Science - Abstract
We assess the additional forest cover protected by 13 rural communities located in the southern state of Chiapas, Mexico, as a result of the economic incentives received through the country's national program of payments for biodiversity conservation. We use spatially explicit data at the intra-community level to define a credible counterfactual of conservation outcomes. We use covariate-matching specifications associated with spatially explicit variables and difference-in-difference estimators to determine the treatment effect. We estimate that the additional conservation represents between 12 and 14.7 percent of forest area enrolled in the program in comparison to control areas. Despite this high degree of additionality, we also observe lack of compliance in some plots participating in the PES program. This lack of compliance casts doubt on the ability of payments alone to guarantee long-term additionality in context of high deforestation rates, even with an augmented program budget or extension of participation to communities not yet enrolled.
- Published
- 2015
- Full Text
- View/download PDF
4. Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943
- Author
-
Jean-François Mas, Stéphane Couturier, Jaime Paneque-Gálvez, Margaret Skutsch, Azucena Pérez-Vega, Miguel Angel Castillo-Santiago, and Gerardo Bocco
- Subjects
land cover mapping ,accuracy assessment ,Landsat ,image classification ,Monitoring, Reporting and Verification (MRV) ,Reduced Emissions from Deforestation and Degradation plus (REDD+) ,Science - Abstract
Gebhardt et al. (2014) presented the Monitoring Activity Data for the Mexican REDD+ program (MAD-MEX), an automatic nation-wide land cover monitoring system for the Mexican REDD+ MRV. Though MAD-MEX represents a valuable first effort toward establishing a national reference emissions level for the implementation of REDD+ in Mexico, in this paper, we argue that this land cover system has important limitations that may prevent it from becoming operational for REDD+ MRV. Specifically, we show that (1) the accuracy assessment of MAD-MEX land cover maps is optimistically biased; (2) the ability of MAD-MEX to monitor land cover change, including deforestation and forest degradation; is poor and (3) the use of an entirely automatic classification approach, such as that followed by MAD-MEX, is highly problematic in the case of a large and heterogeneous country like Mexico. We discuss these limitations and call into question the ability of a land cover monitoring system, such as MAD-MEX, both to elaborate a national reference emissions level and to monitor future forest cover change, as part of a REDD+ MRV system. We provide some insights with the aim of improving the development of nation-wide land cover monitoring systems in Mexico and elsewhere.
- Published
- 2016
- Full Text
- View/download PDF
5. Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests
- Author
-
Ana María Pacheco-Pascagaza, Yaqing Gou, Valentin Louis, John F. Roberts, Pedro Rodríguez-Veiga, Polyanna da Conceição Bispo, Fernando D. B. Espírito-Santo, Ciaran Robb, Caroline Upton, Gustavo Galindo, Edersson Cabrera, Indira Paola Pachón Cendales, Miguel Angel Castillo Santiago, Oswaldo Carrillo Negrete, Carmen Meneses, Marco Iñiguez, and Heiko Balzter
- Subjects
tropical forests ,near real-time ,Tropical forests ,Science ,vegetation change detection ,Vegetation change detection ,Ecology and Environment ,machine learning ,Laboratory of Geo-information Science and Remote Sensing ,Computer Science ,Machine learning ,General Earth and Planetary Sciences ,Data and Information ,deforestation ,Near real-time ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,Deforestation - Abstract
The commitment by over 100 governments covering over 90% of the world’s forests at the COP26 in Glasgow to end deforestation by 2030 requires more effective forest monitoring systems. The near real-time (NRT) change detection of forest cover loss enables forest landowners, government agencies and local communities to monitor natural and anthropogenic disturbances in a much timelier fashion than the thematic maps that are released every year. NRT deforestation alerts enable the establishment of more up-to-date forest inventories and rapid responses to unlicensed logging. The Copernicus Sentinel-2 satellites provide operational Earth observation (EO) data from multi-spectral optical/near-infrared wavelengths every five days at a global scale and at 10 m resolution. The amount of acquired data requires cloud computing or high-performance computing for ongoing monitoring systems and an automated system for processing, analyzing and delivering the information promptly. Here, we present a Sentinel-2-based NRT change detection system, assess its performance over two study sites, Manantlán in Mexico and Cartagena del Chairá in Colombia, and evaluate the forest changes that occurred in 2018. An independent validation with very high-resolution PlanetScope (~3 m) and RapidEye (~5 m) data suggests that the proposed NRT change detection system can accurately detect forest cover loss (> 87%), other vegetation loss (> 76%) and other vegetation gain (> 71%). Furthermore, the proposed NRT change detection system is designed to be attuned using in situ data. Therefore, it is scalable to larger regions, entire countries and even continents.
- Published
- 2022
- Full Text
- View/download PDF
6. Cambios en la cobertura y uso del suelo en la región del Soconusco, Chiapas
- Author
-
Rosa Elena Escobar Flores and Miguel Angel Castillo Santiago
- Subjects
intensificación de la agricultura ,urbanización ,pérdida de sistemas agroforestales ,palma de aceite ,Biodiversity ,Forestry ,uso de suelo ,Land cover ,Vegetation ,SD1-669.5 ,Environmental technology. Sanitary engineering ,Geography ,Deforestation ,deforestación ,Urbanization ,Threatened species ,General Earth and Planetary Sciences ,Land use, land-use change and forestry ,Mangrove ,TD1-1066 ,General Environmental Science - Abstract
El Soconusco se caracteriza por ser una de las regiones agrícolas más productivas del estado de Chiapas, en la que aún se conservan zonas de alta biodiversidad amenazadas por el cambio de uso del suelo. El objetivo de este trabajo fue analizar las trayectorias del cambio en la cobertura y usos del suelo en tres cuencas de dicha región durante un período de 25 años. Se clasificaron imágenes de satélite de 1990, 2000 y 2015. Los resultados mostraron una significativa pérdida de la vegetación natural (bosques, manglares y vegetación secundaria), además de la expansión de los asentamientos humanos. Se identificaron procesos diferentes de cambio en cada uno de los paisajes evaluados: Costa, Planicie y Sierra. En la Planicie, el cambio de uso de suelo predominante fue la sustitución de cultivos básicos por plantaciones agrícolas. En los paisajes de Sierra y Costa, donde hay remanentes importantes de bosques, el cambio más evidente fue la deforestación. A pesar de que en la región se registraron fuertes incrementos en la densidad poblacional y en las áreas urbanas, las zonas dedicadas a la producción de cultivos básicos se han mantenido sin modificaciones. El patrón de cambios en la cobertura de suelo indica que la región de estudio está en un proceso de intensificación de la agricultura y de la urbanización.
- Published
- 2021
7. Estimación de la distribución espacial de los bosques perturbados en Chiapas, México, usando datos satelitales e información auxiliar
- Author
-
Miguel ángel Castillo-Santiago, Edith Mondragon-Vazquez, Flor Rocío Espinosa-Jiménez, Rosa Elena Escobar-Flores, Rafael García-González, Roberto Domínguez-Vera, Sandra Patricia Chanona-Pérez, Jean Francois Mas, and José Luis Hernández-Stefanoni
- Subjects
Biomasa leñosa ,bosques secundarios ,fragmentación forestal ,sistemas agroforestales ,tipos de vegetación ,Botany ,QK1-989 - Abstract
Antecedentes: Los mapas de bosques perturbados son útiles para identificar afectaciones sobre la biodiversidad y los servicios ecosistémicos. Los métodos que emplean únicamente datos espectrales para detectar las perturbaciones a nivel regional tienen limitaciones. El conocimiento de expertos y el análisis de fragmentación puede mejorar la estimación. Preguntas: ¿Cuál es la distribución de los bosques perturbados en una región de alta biodiversidad? ¿Qué tipos de vegetación y regiones son las más afectadas? Descripción de los datos: imágenes satelitales SPOT 2015, Sentinel-2 de 2019. Se colectó información de la vegetación en 653 sitios. Además, se usaron datos de herbario, censos agrícolas y del Inventario Nacional Forestal. Lugar y fecha del estudio: Estado de Chiapas, durante 2018-2022. Métodos: Se elaboró un mapa híbrido de los tipos de vegetación enfatizando la identificación de bosques secundarios, también se realizó un análisis de fragmentación y se calculó la biomasa leñosa por tipo de bosque. Resultados: El 40 % de la superficie del Estado mantiene una cobertura arbórea; pero solo en el 12 % no se aprecia perturbación; la mayor parte de los bosques no perturbados se encuentran en tres regiones: Selva Lacandona, Sierra Madre y Planicie del Golfo. En general la biomasa de los bosques perturbados es significativamente menor que la de su contraparte madura. Conclusiones: En Chiapas la distribución de los bosques en buen estado de conservación está restringida; casi la mitad de ellos se encuentran fuera de las ANP, por lo que es imperativo promover estrategias adicionales para su manejo y conservación.
- Published
- 2024
- Full Text
- View/download PDF
8. Sustained participation in a Payments for Ecosystem Services program reduces deforestation in a Mexican agricultural frontier
- Author
-
Hugo Charoud, Sebastien Costedoat, Santiago Izquierdo-Tort, Lina Moros, Sergio Villamayor-Tomás, Miguel Ángel Castillo-Santiago, Sven Wunder, and Esteve Corbera
- Subjects
Medicine ,Science - Abstract
Abstract Payments for Ecosystem Services (PES) provide conditional incentives for forest conservation. PES short-term effects on deforestation are well-documented, but we know less about program effectiveness when participation is sustained over time. Here, we assess the impact of consecutive renewals of PES contracts on deforestation and forest degradation in three municipalities of the Selva Lacandona (Chiapas, Mexico). PES reduced deforestation both after a single 5-year contract and after two consecutive contracts, but the impacts are only detectable in higher deforestation-risk parcels. Enrollment duration increases PES impact in these parcels, which suggests a positive cumulative effect over time. These findings suggest that improved spatial targeting and longer-term enrollment are key enabling factors to improve forest conservation outcomes in agricultural frontiers.
- Published
- 2023
- Full Text
- View/download PDF
9. Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models
- Author
-
Marylin Bejarano, Rocío Rodiles-Hernández, Raúl Abel Vaca, Miguel Angel Castillo-Santiago, Dario Alejandro Navarrete-Gutiérrez, and Duncan Golicher
- Subjects
Insolation ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Computer science ,Inference ,Forests ,010501 environmental sciences ,01 natural sciences ,Econometrics ,Land use, land-use change and forestry ,Deforestation ,Land tenure ,Additive model ,Geographic Areas ,Climatology ,Multidisciplinary ,Ecology ,Geography ,Agriculture ,Terrestrial Environments ,Professions ,Agricultural Workers ,Medicine ,Livestock ,Research Article ,Urban Areas ,Conservation of Natural Resources ,Science ,Land management ,Context (language use) ,Ecosystems ,Population Metrics ,Rivers ,Mexico ,0105 earth and related environmental sciences ,Population Density ,Spatial Analysis ,Models, Statistical ,Population Biology ,business.industry ,Ecology and Environmental Sciences ,Biology and Life Sciences ,Correction ,People and Places ,Earth Sciences ,Population Groupings ,business ,Forecasting - Abstract
Quantifying patterns of deforestation and linking these patterns to potentially influencing variables is a key component of modelling and projecting land use change. Statistical methods based on null hypothesis testing are only partially successful for interpreting deforestation in the context of the processes that have led to their formation. Simplifications of cause-consequence relationships that are difficult to support empirically may influence environment and development policies because they suggest simple solutions to complex problems. Deforestation is a complex process driven by multiple proximate and underlying factors and a range of scales. In this study we use a multivariate statistical analysis to provide contextual explanation for deforestation in the Usumacinta River Basin based on partial pattern matching. Our approach avoided testing trivial null hypotheses of lack of association and investigated the strength and form of the response to drivers. As not all factors involved in deforestation are easily mapped as GIS layers, analytical challenges arise due to lack of a one to one correspondence between mappable attributes and drivers. We avoided testing simple statistical hypotheses such as the detectability of a significant linear relationship between deforestation and proximity to roads or water. We developed a series of informative generalised additive models based on combinations of layers that corresponded to hypotheses regarding processes. The importance of the variables representing accessibility was emphasised by the analysis. We provide evidence that land tenure is a critical factor in shaping the decision to deforest and that direct beam insolation has an effect associated with fire frequency and intensity. The effect of winter insolation was found to have many applied implications for land management. The methodology was useful for interpreting the relative importance of sets of variables representing drivers of deforestation. It was an informative approach, thus allowing the construction of a comprehensive understanding of its causes.
- Published
- 2019
10. Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests
- Author
-
Juan Manuel Dupuy, Gabriela Reyes-Palomeque, Dinosca Rondon-Rivera, Stephanie P. George-Chacón, Fernando Tun-Dzul, José Luis Hernández-Stefanoni, Miguel Angel Castillo-Santiago, and Astrid Helena Huechacona-Ruiz
- Subjects
Tropical and subtropical dry broadleaf forests ,Biomass (ecology) ,airborne laser scanner ,forest biomass ,plot size ,co-registration error ,Monte Carlo simulation ,010504 meteorology & atmospheric sciences ,Science ,0211 other engineering and technologies ,Tree allometry ,Regression analysis ,02 engineering and technology ,Vegetation ,Atmospheric sciences ,01 natural sciences ,Plot (graphics) ,Lidar ,General Earth and Planetary Sciences ,Environmental science ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Woody plant - Abstract
Accurate estimates of above ground biomass (AGB) are needed for monitoring carbon in tropical forests. LiDAR data can provide precise AGB estimations because it can capture the horizontal and vertical structure of vegetation. However, the accuracy of AGB estimations from LiDAR is affected by a co-registration error between LiDAR data and field plots resulting in spatial discrepancies between LiDAR and field plot data. Here, we evaluated the impacts of plot location error and plot size on the accuracy of AGB estimations predicted from LiDAR data in two types of tropical dry forests in Yucatán, México. We sampled woody plants of three size classes in 29 nested plots (80 m2, 400 m2 and 1000 m2) in a semi-deciduous forest (Kiuic) and 28 plots in a semi-evergreen forest (FCP) and estimated AGB using local allometric equations. We calculated several LiDAR metrics from airborne data and used a Monte Carlo simulation approach to assess the influence of plot location errors (2 to 10 m) and plot size on ABG estimations from LiDAR using regression analysis. Our results showed that the precision of AGB estimations improved as plot size increased from 80 m2 to 1000 m2 (R2 = 0.33 to 0.75 and 0.23 to 0.67 for Kiuic and FCP respectively). We also found that increasing GPS location errors resulted in higher AGB estimation errors, especially in the smallest sample plots. In contrast, the largest plots showed consistently lower estimation errors that varied little with plot location error. We conclude that larger plots are less affected by co-registration error and vegetation conditions, highlighting the importance of selecting an appropriate plot size for field forest inventories used for estimating biomass.
- Published
- 2018
11. Identification of coffee agroforestry systems using remote sensing data: a review of methods and sensor data
- Author
-
Agustín Escobar-López, Miguel Ángel Castillo-Santiago, Jean F. Mas, José Luis Hernández-Stefanoni, and Jorge Omar López-Martínez
- Subjects
Shade-grown coffee ,classifier ,rustic ,polyculture ,monoculture ,Physical geography ,GB3-5030 - Abstract
Coffee is one of the most important agricultural commodities. Agroforestry systems (AFS) are increasingly used in coffee cultivation because of environmental benefits, adaptability of the systems, and economic profits. However, identifying the spatial distribution of AFS through remote sensing continues to be challenging. The current systematic review focuses on the accuracies obtained and the computational methods and satellite data used in mapping coffee AFS between 2000 and 2020. To facilitate the analysis, we ordered the mapped AFS into five classes according to their density and species composition of shade trees. The Kruskal-Wallis test was applied to evaluate significative differences among classes. Both shade-tree densities and species composition affected the accuracy level. The worst results were obtained in AFS retaining many woody species from the original forest and high tree density (user accuracy [Formula: see text]0.5). About the methods, maximum likelihood was the most widely used with very variable results; some non-parametric methods such as CART, ISODATA, RF, SMA, and SVM presented consistently high accuracy ([Formula: see text]0.75). High spatial resolution multispectral imagery was suitable for mapping AFS; very few studies were found with radar imagery, so it would be desirable to increase its use combined with optical data.
- Published
- 2024
- Full Text
- View/download PDF
12. Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943
- Author
-
Gerardo Bocco, Stéphane Couturier, Miguel Angel Castillo-Santiago, Jean-François Mas, Margaret Skutsch, Azucena Pérez-Vega, and Jaime Paneque-Gálvez
- Subjects
Monitoring, Reporting and Verification (MRV) ,010504 meteorology & atmospheric sciences ,business.industry ,Science ,Environmental resource management ,0211 other engineering and technologies ,Monitoring system ,02 engineering and technology ,Land cover ,01 natural sciences ,Reduced Emissions from Deforestation and Degradation plus (REDD+) ,Deforestation ,Forest cover ,General Earth and Planetary Sciences ,Environmental science ,land cover mapping ,Forest degradation ,business ,Landsat ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,accuracy assessment ,image classification - Abstract
Gebhardt et al. (2014) presented the Monitoring Activity Data for the Mexican REDD+ program (MAD-MEX), an automatic nation-wide land cover monitoring system for the Mexican REDD+ MRV. Though MAD-MEX represents a valuable first effort toward establishing a national reference emissions level for the implementation of REDD+ in Mexico, in this paper, we argue that this land cover system has important limitations that may prevent it from becoming operational for REDD+ MRV. Specifically, we show that (1) the accuracy assessment of MAD-MEX land cover maps is optimistically biased; (2) the ability of MAD-MEX to monitor land cover change, including deforestation and forest degradation; is poor and (3) the use of an entirely automatic classification approach, such as that followed by MAD-MEX, is highly problematic in the case of a large and heterogeneous country like Mexico. We discuss these limitations and call into question the ability of a land cover monitoring system, such as MAD-MEX, both to elaborate a national reference emissions level and to monitor future forest cover change, as part of a REDD+ MRV system. We provide some insights with the aim of improving the development of nation-wide land cover monitoring systems in Mexico and elsewhere.
- Published
- 2016
13. Author Correction: Sustained participation in a Payments for Ecosystem Services program reduces deforestation in a Mexican agricultural frontier
- Author
-
Hugo Charoud, Sebastien Costedoat, Santiago Izquierdo‑Tort, Lina Moros, Sergio Villamayor‑Tomás, Miguel Ángel Castillo‑Santiago, Sven Wunder, and Esteve Corbera
- Subjects
Medicine ,Science - Published
- 2024
- Full Text
- View/download PDF
14. How effective are biodiversity conservation payments in Mexico?
- Author
-
Driss Ezzine-de-Blas, Esteve Corbera, Sébastien Costedoat, Jordi Honey-Rosés, Kathy Baylis, and Miguel Angel Castillo-Santiago
- Subjects
Counterfactual thinking ,Natural resource economics ,Biodiversity ,lcsh:Medicine ,forêt tropicale ,Forests ,Additionality ,K01 - Foresterie - Considérations générales ,Gouvernance ,Politique de l'environnement ,Payment ,lcsh:Science ,media_common ,Multidisciplinary ,Environmental resource management ,Incentive ,protection de la forêt ,Forêt ,P01 - Conservation de la nature et ressources foncières ,Biodiversité ,Research Article ,Conservation of Natural Resources ,media_common.quotation_subject ,Context (language use) ,gestion des ressources naturelles ,Législation de l'environnement ,Ecosystems ,Deforestation ,Humans ,K70 - Dégâts causés aux forêts et leur protection ,Mexico ,Rainforests ,Land use ,business.industry ,lcsh:R ,Déboisement ,services écosystémiques ,approches participatives ,Conservation science ,Politique forestière ,lcsh:Q ,business - Abstract
We assess the additional forest cover protected by 13 rural communities located in the southern state of Chiapas, Mexico, as a result of the economic incentives received through the country's national program of payments for biodiversity conservation. We use spatially explicit data at the intra-community level to define a credible counterfactual of conservation outcomes. We use covariate-matching specifications associated with spatially explicit variables and difference-in-difference estimators to determine the treatment effect. We estimate that the additional conservation represents between 12 and 14.7 percent of forest area enrolled in the program in comparison to control areas. Despite this high degree of additionality, we also observe lack of compliance in some plots participating in the PES program. This lack of compliance casts doubt on the ability of payments alone to guarantee long-term additionality in context of high deforestation rates, even with an augmented program budget or extension of participation to communities not yet enrolled.
- Published
- 2015
15. Dinámica del uso de suelo y vegetación en paisajes altamente modificados por actividades agropecuarias en el sur de México
- Author
-
Susana Maza-Villalobos, Edith Alvarado Sosa, Ana Deysi Arriaza Rodríguez, Francisco Infante, and Miguel Ángel Castillo-Santiago
- Subjects
Agrobiodiversidad ,Conservación ,Deforestación ,Botany ,QK1-989 - Abstract
Antecedentes: La identificación de los usos de suelo particulares (e.g., tipo de cultivo) que generan la pérdida de los diferentes tipos de vegetación, las tendencias de degradación y la pérdida de biodiversidad ha sido limitadamente explorada en estudios sobre dinámica del uso de suelo en paisajes agropecuarios. Preguntas: ¿Cuáles son las superficies ocupadas por los diferentes usos de suelo y vegetación? ¿cuál es la permanencia, tasa de cambio y tasa de pérdida de los diferentes usos de suelo y vegetación? ¿qué usos de suelo dirigen los cambios observados? Área de estudio y fechas: Soconusco, Chiapas, México. Período: 2000-2017. Métodos: Se usaron imágenes de Google Earth, el método de fotointerpretación y la verificación en campo para generar mapas de cambio de uso de suelo y vegetación. Se crearon matrices de permanencia/transición y se calcularon tasas de cambio relativo y de pérdida de superficie para los diferentes usos de suelo y vegetación. Resultados: La zona de actividad agropecuaria y la vegetación natural fueron las categorías con mayor superficie y permanencia. La mayor tasa de ganancia anual de superficie se observó en la zona de actividad agropecuaria, influenciada por el incremento de cultivos de importancia económica (mango y palma africana). La mayor tasa de pérdida anual se registró en la vegetación natural, y fue dirigida principalmente por la transición de tular y de vegetación secundaria hacia zonas agropecuarias. Conclusiones: Ante la limitada formación de vegetación secundaria y la alta permanencia/incremento de zonas agropecuarias, es importante considerar acciones que diversifiquen estos paisajes agropecuarios.
- Published
- 2023
- Full Text
- View/download PDF
16. Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
- Author
-
J. Luis Hernández-Stefanoni, Miguel Ángel Castillo-Santiago, Jean Francois Mas, Charlotte E. Wheeler, Juan Andres-Mauricio, Fernando Tun-Dzul, Stephanie P. George-Chacón, Gabriela Reyes-Palomeque, Blanca Castellanos-Basto, Raúl Vaca, and Juan Manuel Dupuy
- Subjects
Climatic water deficit ,Forest biomass ,L-band SAR ,Random forest ,Texture analysis ,Yucatan peninsula ,Environmental sciences ,GE1-350 - Abstract
Abstract Background Reliable information about the spatial distribution of aboveground biomass (AGB) in tropical forests is fundamental for climate change mitigation and for maintaining carbon stocks. Recent AGB maps at continental and national scales have shown large uncertainties, particularly in tropical areas with high AGB values. Errors in AGB maps are linked to the quality of plot data used to calibrate remote sensing products, and the ability of radar data to map high AGB forest. Here we suggest an approach to improve the accuracy of AGB maps and test this approach with a case study of the tropical forests of the Yucatan peninsula, where the accuracy of AGB mapping is lower than other forest types in Mexico. To reduce the errors in field data, National Forest Inventory (NFI) plots were corrected to consider small trees. Temporal differences between NFI plots and imagery acquisition were addressed by considering biomass changes over time. To overcome issues related to saturation of radar backscatter, we incorporate radar texture metrics and climate data to improve the accuracy of AGB maps. Finally, we increased the number of sampling plots using biomass estimates derived from LiDAR data to assess if increasing sample size could improve the accuracy of AGB estimates. Results Correcting NFI plot data for both small trees and temporal differences between field and remotely sensed measurements reduced the relative error of biomass estimates by 12.2%. Using a machine learning algorithm, Random Forest, with corrected field plot data, backscatter and surface texture from the L-band synthetic aperture radar (PALSAR) installed on the on the Advanced Land Observing Satellite-1 (ALOS), and climatic water deficit data improved the accuracy of the maps obtained in this study as compared to previous studies (R2 = 0.44 vs R2 = 0.32). However, using sample plots derived from LiDAR data to increase sample size did not improve accuracy of AGB maps (R2 = 0.26). Conclusions This study reveals that the suggested approach has the potential to improve AGB maps of tropical dry forests and shows predictors of AGB that should be considered in future studies. Our results highlight the importance of using ecological knowledge to correct errors associated with both the plot-level biomass estimates and the mismatch between field and remotely sensed data.
- Published
- 2020
- Full Text
- View/download PDF
17. Identifying Coffee Agroforestry System Types Using Multitemporal Sentinel-2 Data and Auxiliary Information
- Author
-
Agustín Escobar-López, Miguel Ángel Castillo-Santiago, José Luis Hernández-Stefanoni, Jean François Mas, and Jorge Omar López-Martínez
- Subjects
Sierra Madre ,Chiapas ,random forest ,shade coffee ,recursive feature elimination ,Science - Abstract
Coffee is one of the most important agricultural commodities of Mexico. Mapping coffee land cover is still a challenge because it is grown mainly on small areas in agroforestry systems (AFS), which are located in hard-to-access mountainous regions. The objective of this research was to map coffee AFS types in a mountainous region using the changing spectral response patterns over the dry season as well as supplementary data. We employed Sentinel-1, Sentinel-2 and ALOS-Palsar images, a digital elevation model, soil moisture layers, and 150 field plots. First, we defined three coffee AFS types based on their structural and spectral characteristics. Then, we performed a recursive feature elimination analysis to identify the most relevant predictor variables for each land use/cover class in the region. Next, we constructed a predictor variable dataset for each AFS type and one for the remaining land use/cover classes. Afterward, four maps were generated using a random forest (RF) classifier. Finally, we combined the four maps into a unique land-cover map through a maximum likelihood algorithm. Using a validation sample of 932 sites derived from Planet images (4.5 m pixel size), we estimated a 95% map overall accuracy. Two AFS types were classified as having low error; the third, with the highest tree density, had the lowest accuracy. The results obtained show that the infrared and near-infrared bands from the Sentinel-2 scenes are particularly useful for coffee AFS discrimination. However, supplementary data are required to improve the performance of the classifier. Our findings also highlight the importance of the multi-temporal and multi-dataset approach for identifying complex production systems in areas of high topographic heterogeneity.
- Published
- 2022
- Full Text
- View/download PDF
18. Carbon Stocks, Species Diversity and Their Spatial Relationships in the Yucatán Peninsula, Mexico
- Author
-
José Luis Hernández-Stefanoni, Miguel Ángel Castillo-Santiago, Juan Andres-Mauricio, Carlos A. Portillo-Quintero, Fernando Tun-Dzul, and Juan Manuel Dupuy
- Subjects
biodiversity ,aboveground biomass ,tropical dry forests ,L-band SAR ,texture analysis ,national forest inventory ,Science - Abstract
Integrating information about the spatial distribution of carbon stocks and species diversity in tropical forests over large areas is fundamental for climate change mitigation and biodiversity conservation. In this study, spatial models showing the distribution of carbon stocks and the number of species were produced in order to identify areas that maximize carbon storage and biodiversity in the tropical forests of the Yucatan Peninsula, Mexico. We mapped carbon density and species richness of trees using L-band radar backscatter data as well as radar texture metrics, climatic and field data with the random forest regression algorithm. We reduced sources of errors in plot data of the national forest inventory by using correction factors to account for carbon stocks of small trees (2) of 0.28 and 0.31 and a relative mean square error of 38.5% and 33.0% for aboveground biomass and species richness, respectively, at pixel level. Estimates of carbon density were influenced mostly by radar backscatter and climatic data, while those of species richness were influenced mostly by radar texture and climatic variables. Correlation between carbon density and species richness was positive in 79.3% of the peninsula, while bivariate maps showed that 39.6% of the area in the peninsula had high carbon stocks and species richness. Our results highlight the importance of combining carbon and diversity maps to identify areas that are critical—both for maintaining carbon stocks and for conserving biodiversity.
- Published
- 2021
- Full Text
- View/download PDF
19. Correction: Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models.
- Author
-
Raúl Abel Vaca, Duncan John Golicher, Rocío Rodiles-Hernández, Miguel Ángel Castillo-Santiago, Marylin Bejarano, and Darío Alejandro Navarrete-Gutiérrez
- Subjects
Medicine ,Science - Abstract
[This corrects the article DOI: 10.1371/journal.pone.0222908.].
- Published
- 2020
- Full Text
- View/download PDF
20. Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models.
- Author
-
Raúl Abel Vaca, Duncan John Golicher, Rocío Rodiles-Hernández, Miguel Ángel Castillo-Santiago, Marylin Bejarano, and Darío Alejandro Navarrete-Gutiérrez
- Subjects
Medicine ,Science - Abstract
Quantifying patterns of deforestation and linking these patterns to potentially influencing variables is a key component of modelling and projecting land use change. Statistical methods based on null hypothesis testing are only partially successful for interpreting deforestation in the context of the processes that have led to their formation. Simplifications of cause-consequence relationships that are difficult to support empirically may influence environment and development policies because they suggest simple solutions to complex problems. Deforestation is a complex process driven by multiple proximate and underlying factors and a range of scales. In this study we use a multivariate statistical analysis to provide contextual explanation for deforestation in the Usumacinta River Basin based on partial pattern matching. Our approach avoided testing trivial null hypotheses of lack of association and investigated the strength and form of the response to drivers. As not all factors involved in deforestation are easily mapped as GIS layers, analytical challenges arise due to lack of a one to one correspondence between mappable attributes and drivers. We avoided testing simple statistical hypotheses such as the detectability of a significant linear relationship between deforestation and proximity to roads or water. We developed a series of informative generalised additive models based on combinations of layers that corresponded to hypotheses regarding processes. The importance of the variables representing accessibility was emphasised by the analysis. We provide evidence that land tenure is a critical factor in shaping the decision to deforest and that direct beam insolation has an effect associated with fire frequency and intensity. The effect of winter insolation was found to have many applied implications for land management. The methodology was useful for interpreting the relative importance of sets of variables representing drivers of deforestation. It was an informative approach, thus allowing the construction of a comprehensive understanding of its causes.
- Published
- 2019
- Full Text
- View/download PDF
21. Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests
- Author
-
José Luis Hernández-Stefanoni, Gabriela Reyes-Palomeque, Miguel Ángel Castillo-Santiago, Stephanie P. George-Chacón, Astrid Helena Huechacona-Ruiz, Fernando Tun-Dzul, Dinosca Rondon-Rivera, and Juan Manuel Dupuy
- Subjects
airborne laser scanner ,forest biomass ,plot size ,co-registration error ,Monte Carlo simulation ,Science - Abstract
Accurate estimates of above ground biomass (AGB) are needed for monitoring carbon in tropical forests. LiDAR data can provide precise AGB estimations because it can capture the horizontal and vertical structure of vegetation. However, the accuracy of AGB estimations from LiDAR is affected by a co-registration error between LiDAR data and field plots resulting in spatial discrepancies between LiDAR and field plot data. Here, we evaluated the impacts of plot location error and plot size on the accuracy of AGB estimations predicted from LiDAR data in two types of tropical dry forests in Yucatán, México. We sampled woody plants of three size classes in 29 nested plots (80 m2, 400 m2 and 1000 m2) in a semi-deciduous forest (Kiuic) and 28 plots in a semi-evergreen forest (FCP) and estimated AGB using local allometric equations. We calculated several LiDAR metrics from airborne data and used a Monte Carlo simulation approach to assess the influence of plot location errors (2 to 10 m) and plot size on ABG estimations from LiDAR using regression analysis. Our results showed that the precision of AGB estimations improved as plot size increased from 80 m2 to 1000 m2 (R2 = 0.33 to 0.75 and 0.23 to 0.67 for Kiuic and FCP respectively). We also found that increasing GPS location errors resulted in higher AGB estimation errors, especially in the smallest sample plots. In contrast, the largest plots showed consistently lower estimation errors that varied little with plot location error. We conclude that larger plots are less affected by co-registration error and vegetation conditions, highlighting the importance of selecting an appropriate plot size for field forest inventories used for estimating biomass.
- Published
- 2018
- Full Text
- View/download PDF
22. Determinantes de la distribución de Pinus ssp. en la Altiplanicie Central de Chiapas, México
- Author
-
María Patrocinio Alba-López, Mario González-Espinosa, Neptalí Ramírez-Marcial, and Miguel Ángel Castillo-Santiago
- Subjects
coníferas ,pinos ,regresión logística ,sistemas de información geográfica ,variables ambientales ,Botany ,QK1-989 - Abstract
Analizamos las relacionesdela benignidad ambiental, la estacionalidad y la calidad/fertilidad del suelo con la distribución de nueve especies de Pinus de Los Altos de Chiapas, México. Usamos información georreferenciada de 241 ejemplares herborizados colectados en 180 sitios entre 1939 y 1999. Tres componentes principales explicaron 76.5% de la variación en la distribución de las especies. El primer componente se relacionón con las condiciones de humedad, el segundo con la temperatura y el trcerocon la calidad/fertilidad del suelo. Se intentó exolicar la distribución de las especies con una regresión logística. La presencia de P. maximinoi, P. oocarpa, P. pseudostrobus y P. tecumumanii se explicó con la altitud (P
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.