1. Isotope labeling and infrared multiple-photon photodissociation investigation of product ions generated by dissociation of [ZnNO3(CH3OH2]+: Conversion of methanol to formaldehyde
- Author
-
John K. Gibson, Michael J. Van Stipdonk, Jos Oomens, Evan Perez, Giel Berden, Jonathan Martens, Theodore A. Corcovilos, and Molecular Spectroscopy (HIMS, FNWI)
- Subjects
FELIX Molecular Structure and Dynamics ,010405 organic chemistry ,Infrared ,Electrospray ionization ,Photodissociation ,Formaldehyde ,General Medicine ,010402 general chemistry ,Tandem mass spectrometry ,Photochemistry ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Dissociation (chemistry) ,0104 chemical sciences ,Ion ,chemistry.chemical_compound ,chemistry ,Methanol ,Spectroscopy - Abstract
Electrospray ionization was used to generate species such as [ZnNO3(CH3OH)2]+ from Zn(NO3)2•XH2O dissolved in a mixture of CH3OH and H2O. Collision-induced dissociation of [ZnNO3(CH3OH)2]+ causes elimination of CH3OH to form [ZnNO3(CH3OH)]+. Subsequent collision-induced dissociation of [ZnNO3(CH3OH)]+ causes elimination of 47 mass units (u), consistent with ejection of HNO2. The neutral loss shifts to 48 u for collision-induced dissociation of [ZnNO3(CD3OH)]+, demonstrating the ejection of HNO2 involves intra-complex transfer of H from the methyl group methanol ligand. Subsequent collision-induced dissociation causes the elimination of 30 u (32 u for the complex with CD3OH), suggesting the elimination of formaldehyde (CH2 = O). The product ion is [ZnOH]+. Collision-induced dissociation of a precursor complex created using CH3-18OH shows the isotope label is retained in CH2 = O. Density functional theory calculations suggested that the “rearranged” product, ZnOH with bound HNO2 and formaldehyde is significantly lower in energy than ZnNO3 with bound methanol. We therefore used infrared multiple-photon photodissociation spectroscopy to determine the structures of both [ZnNO3(CH3OH)2]+ and [ZnNO3(CH3OH)]+. The infrared spectra clearly show that both ions contain intact nitrate and methanol ligands, which suggests that rearrangement occurs during collision-induced dissociation of [ZnNO3(CH3OH)]+. Based on the density functional theory calculations, we propose that transfer of H, from the methyl group of the CH3OH ligand to nitrate, occurs in concert with the formation of a Zn–C bond. After dissociation to release HNO2, the product rearranges with the insertion of the remaining O atom into the Zn–C bond. Subsequent C–O bond cleavage, with H transfer, produces an ion–molecule complex composed of [ZnOH]+ and O = CH2.
- Published
- 2019