Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services. DOI: http://dx.doi.org/10.7554/eLife.07641.001, eLife digest Flowering plants have evolved a number of different approaches to reproduction. Some use their own pollen and self-fertilize, while others use pollen from other nearby plants. This fertilization by other plants is called ‘outcrossing’ and introduces new genetic variation into each generation, which is extremely important for the evolutionary process. Some flowering plants rely on animals to help with pollination, attracting visitors with floral scents and rewarding the visitors with sugar-rich nectar. But scent and nectar also attract herbivores that damage the plants. This causes a dilemma for flowering plants, which has led some to evolve to not produce scent or to offer no nectar while masquerading as a plant that does. Previous studies into the costs and benefits of such strategies have looked at the effects of either floral scent or nectar, but no-one has uncoupled the effects of these two traits on both pollination and herbivore attack. Kessler et al. have addressed this issue in wild tobacco plants, which can both self-fertilize and outcross, and which produce varying amounts of scent and nectar. The experiments were conducted under mesh tents and in field trials in the plant's natural habitat: the Great Basin Desert in Utah. Kessler et al. used a gene-silencing technique called ‘RNA interference’ to inhibit the production of scent or nectar, either separately or together. When grown in field trials, under conditions that prevent self-fertilization, these tobacco plants are frequently visited by a hummingbird and three species of hawkmoth. All four of these animals pollinate the tobacco plants, but one of the moths also lays eggs that hatch into caterpillars, which damage the plant. Kessler et al. monitored the effects that the loss of scent, nectar or both had on visits by each pollinator and on outcrossing. These experiments revealed that scent is essential to attract one hawkmoth species but not for another (called Hyles lineata). Furthermore, while, the hummingbird needs nectar, the H. lineata moth does not; but this moth won't visit flowers that lack both scent and nectar. The experiments also show that, for the moth that lays its eggs on the tobacco plants, both scent and nectar increase pollination and egg laying, but nectar has a stronger effect. Thus reducing nectar, as this tobacco plant does in the wild, is one strategy that can be used to reduce herbivore attack by caterpillars. Together, these findings highlight that it is important to study both herbivores and pollinators when attempting to understand the evolution of floral traits. DOI: http://dx.doi.org/10.7554/eLife.07641.002