1. Coulomb-free 1 S 0 p − p scattering length from the quasi-free p + d → p + p + n reaction and its relation to universality
- Author
-
Aurora Tumino, Giuseppe G. Rapisarda, Marco La Cognata, Alessandro Oliva, Alejandro Kievsky, Carlos A. Bertulani, Giuseppe D’Agata, Mario Gattobigio, Giovanni L. Guardo, Livio Lamia, Dario Lattuada, Rosario G. Pizzone, Stefano Romano, Maria L. Sergi, Roberta Spartá, and Michele Viviani
- Subjects
Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
Abstract The Coulomb-free 1 S 0 proton-proton (p-p) scattering length relies heavily on numerous and distinct theoretical techniques to remove the Coulomb contribution. Here, it has been determined from the half-off-the-energy-shell p-p scattering cross section measured at center-of-mass energies below 1 MeV using the quasi-free p + d → p + p + n reaction. A Bayesian data-fitting approach using the expression of the s-wave nucleon-nucleon scattering cross section returned a p-p scattering length $${a}_{pp}=-18.1{7}_{-0.58}^{+0.52}{| }_{stat}\pm 0.0{1}_{syst}$$ a p p = − 18.1 7 − 0.58 + 0.52 ∣ s t a t ± 0.0 1 s y s t fm and effective range r 0 = 2.80 ± 0.05 s t a t ± 0.001 s y s t fm. A model based on universality concepts has been developed to interpret this result. It accounts for the short-range interaction as a whole, nuclear and residual electromagnetic, according to what the s-wave phase-shift δ does in the description of low-energy nucleon-nucleon scattering data. We conclude that our parameters are representative of the short-range physics and propose to assess the charge symmetry breaking of the short-range interaction instead of just the nuclear interaction. This is consistent with the current understanding that the charge dependence of nuclear forces is due to different masses of up-down quarks and their electromagnetic interactions. This achievement suggests that these properties have a lesser than expected impact in the context of the charge symmetry breaking.
- Published
- 2023
- Full Text
- View/download PDF