Spinal Cord Injuries (SCI) have severe consequences such as tetraplegia and paraplegia, which dramatically affect the healthcare of the patients. Successful therapies for such injuries are yet to be attainable. Currently, there is a focus on the study and implementation of small implantable devices that are capable of providing in-vivo electrical stimulation to the spinal cord. Since the impedance of the neural tissue experiences constant changes, the focus is on using current stimulation instead of voltage, to compensate the impedance variations. Furthermore, the usage of scaffolds to provide alignment on the regrown fibers, combined with electrical stimulation is viewed as possible solution for SCI therapy. The NeuroStim- Spinal project, in which this work is inserted, aims to propose a SCI therapy based on in-vivo electrical stimulation combined with 3D printed scaffolds that have in its composition based materials (GBM) and adipose derived decellularized tissue (adECM). The work presented is an application-specific integrated circuit design (ASIC) that provides current-mode stimulation for neuronal regeneration, with the objective of providing in-vivo electrical stimulation for SCI therapy. The main challenges on the design of such devices is in obtaining low circuit area and power consumption, while maintaining the specifications needed. These characteristics are important, since it is intended to be an implantable device. The stimulation circuit consists of, a communication interface with a microcontroller using the Serial Peripheral Communication (SPI) protocol, a 10-bit DAC (Digital-to-Analog Converter) based on a binary charge scaling architecture, a voltage-to-current converter with a feed-forward voltage attenuator (FFVA) architecture, and a H-bridge circuit composed of CMOS switches to drive the scaffold. Results demonstrate that the system developed is capable of driving current from 0 to 200μA with an absolute error bellow 0.75μA. In addition, the developed circuit can provide these range of currents with high linearity to a 15k load impedance. The system can still provide linear stimulation for higher load impedance’s, but in smaller current ranges. Furthermore, the circuit uses a supply voltage of 5V and has an average power dissipation of 19.5mW. The ASIC was developed using a 0.35μm CMOS technology, has dimensions of 270μm per 700μm, which corresponds to a total area of 0.19mm2. The work was developed using the Cadence software. Lesões na Medula Espinhal são causadas sobretudo devido acidentes rodoviários, quedas e lesões na prática de desportos. Estas têm graves consequências no estado de saúde dos pacientes, uma vez que saõ responsáveis por diagnósticos como tetraplegia e paraplegia. Até hoje, terapias eficazes para este tipo de lesões ainda não foram conseguidas, o que torna esta temática num foco de estudo. Atualmente, uma das orientações deste foco de estudo está direcionado em dispositivos elétricos implantáveis capazes de estimular a espinal medula in-vivo, promovendo a regeneração da mesma. Adicionalmente, o uso de materiais (scaffolds) que permitem manter o alinhemento no crescimento das fibras, em conjunto com estimulação elétrica é vista como a solução consensual para terapias relacionadas com Lesões na Medula Espinhal. Assim, o projeto NeuroStimSpinal, na qual este trabalho se insere, foi proposto. Este tem como objetivo propor uma terapia para esta problemática usando estimulação elétrica em conjunto com scaffolds impressas em 3D. O trabalho apresentado nesta dissertação é baseado num circuito integrado de aplicação específica (CIAE) para estimulação em corrente da espinal medula, com o intuito de promover a regeneração da mesma. Os desafios na implementação deste tipo de circuitos estão relacionados com a necessidade destes terem de ser pequenos em tamanho e consumir uma potência reduzida, mantendo as características necessárias para a estimulação, uma vez que é necessário que o mesmo faça parte de um dispositivo implantável. O circuito de estimulação proposto consiste: numa interface de comunicação com a unidade de controlo (microcontrolador) usando o protocolo Serial Peripheral Communication (SPI); um conversor digital para analógico de 10 bits, o qual se baseia numa arquitetura de escalonamento binário por carga; um conversor tensão para corrente rail-to-rail e uma ponte H que direciona a corrente pela scaffold, cuja implementação se baseia no uso de portas de transmissão como comutadores. Resultados ao trabalho desenvolvido mostram que o circuito é capaz de estimular a scaffold com correntes entre 0 to 200μA com um erro na corrente de estimulação inferior a 0.75μA. O circuito é capaz ainda de fornecer uma corrente linear, na gama mencionada, a cargas com impedancias até 15k . Para cargas superiores o circuito é capaz de fornecer uma corrente linear, embora em gamas de correntes menores. O circuito implementado usa como tensão de alimentação 5V, tem um consumo médio de potência de 19.5mW e ocupa uma área de 0.19mm2. No decurso do trabalho desenvolvido foi utilizada uma tecnlogoia CMOS de 0.35um. A implementação e resultados foram obtidos com recurso ao software Cadence. Mestrado em Engenharia Eletrónica e Telecomunicações