1. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells.
- Author
-
Alvarez AM, Trufen CEM, Buri MV, de Sousa MBN, Arruda-Alves FI, Lichtenstein F, Castro de Oliveira U, Junqueira-de-Azevedo ILM, Teixeira C, and Moreira V
- Subjects
- Animals, Mice, Cell Line, Chemokines metabolism, Chemokines genetics, Cytokines metabolism, Cytokines genetics, Gene Expression Regulation drug effects, Myoblasts metabolism, Tumor Necrosis Factor-alpha metabolism, Tumor Necrosis Factor-alpha pharmacology, Cell Proliferation drug effects, Signal Transduction
- Abstract
Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.
- Published
- 2024
- Full Text
- View/download PDF