4 results on '"Jean-Baptiste Alberge"'
Search Results
2. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes
- Author
-
Nathalie Labarrière, Lucine Marotte, Sylvain Simon, Virginie Vignard, Emilie Dupre, Malika Gantier, Jonathan Cruard, Jean-Baptiste Alberge, Melanie Hussong, Cecile Deleine, Jean-Marie Heslan, Jonathan Shaffer, Tiffany Beauvais, Joelle Gaschet, Emmanuel Scotet, Delphine Fradin, Anne Jarry, and Tuan Nguyen
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Background Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments.Methods Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain’s sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR.Results Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model.Conclusion The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.
- Published
- 2020
- Full Text
- View/download PDF
3. Molecular Signature of 18 F-FDG PET Biomarkers in Newly Diagnosed Multiple Myeloma Patients: A Genome-Wide Transcriptome Analysis from the CASSIOPET Study
- Author
-
Jean-Baptiste Alberge, Françoise Kraeber-Bodéré, Bastien Jamet, Cyrille Touzeau, Hélène Caillon, Soraya Wuilleme, Marie-Christine Béné, Tobias Kampfenkel, Pieter Sonneveld, Mark van Duin, Herve Avet-Loiseau, Jill Corre, Florence Magrangeas, Thomas Carlier, Caroline Bodet-Milin, Michel Chérel, Philippe Moreau, Stéphane Minvielle, Clément Bailly, Minvielle, Stéphane, Centre hospitalier universitaire de Nantes (CHU Nantes), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Site de Recherche Intégrée sur le Cancer [Nantes] (SIRIC), SIRIC ILIAD [Angers, Nantes], CRLCC René Gauducheau, Janssen Research & Development, Erasmus University Medical Center [Rotterdam] (Erasmus MC), Laboratoire de génomique du myélome [IUCT Oncopole, Toulouse], Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Hematology
- Subjects
multiple myeloma ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Radiology, Nuclear Medicine and imaging ,RNA sequencing ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,CASSIOPET study ,genome-wide transcriptome ,18F-FDG PET - Abstract
International audience; The International Myeloma Working Group recently fully incorporated 18F-FDG PET into multiple myeloma (MM) diagnosis and response evaluation. Moreover, a few studies demonstrated the prognostic value of several biomarkers extracted from this imaging at baseline. Before these 18F-FDG PET biomarkers could be fully endorsed as risk classifiers by the hematologist community, further characterization of underlying molecular aspects was necessary. Methods: Reported prognostic biomarkers (18F-FDG avidity, SUVmax, number of focal lesions, presence of paramedullary disease [PMD] or extramedullary disease) were extracted from 18F-FDG PET imaging at baseline in a group of 139 patients from CASSIOPET, a companion study of the CASSIOPEIA cohort (ClinicalTrials.gov identifier NCT02541383). Transcriptomic analyses using RNA sequencing were realized on sorted bone marrow plasma cells from the same patients. An association with a high-risk gene expression signature (IFM15), molecular classification, progression-free survival, a stringent clinical response, and minimal residual disease negativity were explored. Results:18F-FDG PET results were positive in 79.4% of patients; 14% and 11% of them had PMD and extramedullary disease, respectively. Negative 18F-FDG PET results were associated with lower levels of expression of hexokinase 2 (HK2) (fold change, 2.1; adjusted P = 0.04) and showed enrichment for a subgroup of patients with a low level of bone disease. Positive 18F-FDG PET results displayed 2 distinct signatures: either high levels of expression of proliferation genes or high levels of expression of GLUT5 and lymphocyte antigens. PMD and IFM15 were independently associated with a lower level of progression-free survival, and the presence of both biomarkers defined a group of "double-positive" patients at very high risk of progression. PMD and IFM15 were related neither to minimal residual disease assessment nor to a stringent clinical response. Conclusion: Our study confirmed and extended the association between imaging biomarkers and transcriptomic programs in MM. The combined prognostic value of PMD and a high-risk IFM15 signature may help define MM patients with a very high risk of progression.
- Published
- 2022
- Full Text
- View/download PDF
4. IGLL5-BCL2L1 Rearrangement with Loss of BCL2 Dependency As Mechanism of Venetoclax Resistance in Multiple Myeloma (MM)
- Author
-
Stephane Minvielle, Madison Kong, Paola Neri, Nizar J. Bahlis, Justin Donovan, Arzina Jaffer, Sarthak Sinha, Ranjan Maity, Jean-Baptiste Alberge, Bernardo, Elizabeth, Integrative Oncogenomics of Multiple Myeloma Pathogenesis and Progression (CRCINA-ÉQUIPE 11), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Indian Institute of Technology Guwahati (IIT Guwahati), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), and Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)
- Subjects
0303 health sciences ,Venetoclax ,Immunology ,Locus (genetics) ,Chromosomal translocation ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Cell Biology ,Hematology ,Biology ,Biochemistry ,Molecular biology ,Chromatin ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,chemistry ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Chromosome 20 ,Enhancer ,Gene ,Chromosome 22 ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,030215 immunology - Abstract
Background: Targeting the anti-apoptotic BCL2 protein in haematological malignancies has demonstrated significant anti-tumoral activity in a subset of multiple myeloma patients harbouring rearrangements involving the CCND1 and the immunoglobulin heavy chain enhancers (Eμ and α1/2). The mechanisms underlying the dependency of this subgroup of MM patients on BCL2 remains to be elucidated as well as the mechanisms of resistance to BCL2 inhibition with BH3 mimetic venetoclax. Methods and Results: Sorted bone marrow plasma cells from a cohort of t(11;14) myeloma patients treated with venetoclax were profiled through multi-omics single cell mRNA expression (scRNAseq), copy number profiling (scCNVseq) as well as chromatin accessibility with single cell ATAC-seq. Sequenced reads were aligned to hg38 reference genome. Samples were processed with CellRanger suite v3.0 and downstream analyses were realized with Seurat, Monocle, Signac, and Cicero R packages. Single plasma cells exhibited differential chromatin accessibility landscapes within and across individual patients as well as pre- and post-venetoclax with enrichment of MYC:MAX, RELA, IRF family, RUNX1/3 and ETS motifs. Integration of mRNA and ATAC data revealed a dynamic change of regulatory motifs across individual cell clusters with evidence of selective pressures driven by venetoclax treatment. Similarly mRNA profiling of the apoptotic genes pre- and post-venetoclax exposure showed loss of BCL2 and upregulation of MCL1 and/or BCL2L1 as well as loss of the BH3-only pro-apoptotic genes PMAIP1 and BCC3 in single cell clusters. mRNA levels mirrored open chromatin at the gene bodies and their respective promoter loci consistent with a direct transcriptional regulation. In a patient with several fold upregulation of the BCL2L1 transcript in the post-venetoclax sample (Figure A-B), scATACseq identified a gain in the chromatin accessibility mapping to a genomic region centromeric to BCL2L1 locus on chromosome 20 (chr20:31,617,200-31,619,900). Single cell CNV analysis identified a 5q loss (chr5:142,400,001-156,240,000) mapping to NR3C1 locus explaining with the clinical resistance to dexamethasone. Importantly scCNV also revealed a copy number gain mapping to the same locus with the newly acquired chromatin accessibility on chromosome 20. Mate-pair analysis of the sequencing reads identified the potent IGLL5 B-cell enhancer on chromosome 22 (chr22:22,960,001-22,980,000) as the mate partner juxtaposed the BCL2L1 locus (Figure C). This finding explains the robust upregulation of BCL2L1 mRNA observed in this patient and the shift in BCL2 dependency detected by ex vivo BH3 sensitivity profiling. Of note, while scCNV analysis also depicted a gain in 1q21 (chr1:149,940,001-169,980,001) MCL1 locus at the time of venetoclax resistance the acquisition of t(20,22) shifted the plasma cells dependency to BCL-xL rather than MCL1. This finding was corroborated by the plasma cells ex vivo resistance to dual BCL2 and MCL1 inhibition. Conclusion: Dynamic single cell epigenome and transcriptome profiling of pre- and post-venetoclax of primary plasma cells identified a de novo translocation driving BCL-xL transcription with the IGLL5 B-cell enhancer. This demonstrates that in addition to canonical TF-promoter regulation, restructuring of immunoglobulin regulatory sequences (i.e., enhancers) can also drive aberrant malignant circuitry endowing resistance to anti-BCL2 agents. Figure. Disclosures Neri: Celgene, Janssen: Consultancy, Honoraria, Research Funding. Bahlis:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.