1. A Multi-Atlas and Label Fusion Approach for Patient-Specific MRI Based Skull Segmentation
- Author
-
Torrado-Carvajal, Angel, Lopez Herraiz, Joaquin, Hernández-Tamames, Juan Antonio, San Jose-Estepar, Raul, Eryaman, Yigitcan, Rozenholc, Yves, Adalsteinsson, Elfar, Wald, Lawrence, Malpica, Norberto, Universidad Rey Juan Carlos [Madrid] ( URJC ), Madrid-MIT m+Vision Consortium, Massachusetts Institute of Technology ( MIT ), Research Laboratory of Electronics [Cambridge] ( RLE ), Department of Radiology [Boston], Brigham and Women's Hospital [Boston], Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital [Boston]-Harvard Medical School [Boston] ( HMS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Model selection in statistical learning ( SELECT ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Laboratoire de Mathématiques d'Orsay ( LMO ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Medical Engineering and Science [Cambridge] ( IMES ), Harvard-MIT Division of Health Sciences and Technology [Cambridge], Department of Electrical Engineering and Computer Science ( EECS ), Universidad Rey Juan Carlos [Madrid] (URJC), Massachusetts Institute of Technology (MIT), Research Laboratory of Electronics [Cambridge] (RLE), Massachusetts General Hospital [Boston]-Harvard Medical School [Boston] (HMS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Model selection in statistical learning (SELECT), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institute of Medical Engineering and Science [Cambridge] (IMES), Department of Electrical Engineering and Computer Science (EECS), Harvard Medical School [Boston] (HMS)-Massachusetts General Hospital [Boston], Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience; PURPOSE:MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume.METHODS:The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms.RESULTS:The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers.CONCLUSION:It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
- Published
- 2014