33 results on '"Hubbard, SS"'
Search Results
2. Time-lapse 3-D electrical resistance tomography inversion for crosswell monitoring of dissolved and supercritical CO2 flow at two field sites: Escatawpa and Cranfield, Mississippi, USA
- Author
-
Commer, M, Doetsch, J, Dafflon, B, Wu, Y, Daley, TM, and Hubbard, SS
- Abstract
© 2016 Elsevier Ltd. In this study, we advance the understanding of three-dimensional (3-D) electrical resistivity tomography (ERT) for monitoring long-term CO2 storage by analyzing two previously published field time-lapse data sets. We address two important aspects of ERT inversion-the issue of resolution decay, a general impediment to the ERT method, and the issue of potentially misleading imaging artifacts due to 2-D model assumptions. The first study analyzes data from a shallow dissolved-CO2 injection experiment near Escatawpa (Mississippi), where ERT data were collected in a 3-D crosswell configuration. We apply a focusing approach designed for crosswell configurations to counteract resolution loss in the inter-wellbore area, with synthetic studies demonstrating its effectiveness. The 3-D field data analysis reveals an initially southwards-trending flow path development and a dispersing plume development in the downgradient inter-well region. The second data set was collected during a deep (over 3 km) injection of supercritical CO2 near Cranfield (Mississippi). Comparative 2-D and 3-D inversions reveal the projection of off-planar anomalies onto the cross-section, a typical artifact introduced by 2-D model assumptions. Conforming 3-D images from two different algorithms support earlier hydrological investigations, indicating a conduit system where flow velocity variations lead to a circumvention of a close observation well and an onset of increased CO2 saturation downgradient from this well. We relate lateral permeability variations indicated by an independently obtained hydrological analysis to this consistently observed pattern in the CO2 spatial plume evolution.
- Published
- 2016
- Full Text
- View/download PDF
3. Outdoor mesoscale fabricated ecosystems: Rationale, design, and application to evapotranspiration.
- Author
-
Peruzzo L, Chou C, Hubbard SS, Brodie E, Uhlemann S, Dafflon B, Wielandt S, Mary B, Cassiani G, Morales A, and Wu Y
- Abstract
The disparity in scale, complexity, and control level between laboratory experiments and field observational studies has shaped both the methodologies employed and the nature of the research questions pursued in ecology and hydrology. While lysimeters and fabricated ecosystems suitably fit in this gap, their use as mesoscale experimental facilities has not been fully explored because of the limited manipulating capabilities and integration with imaging and monitoring methods, particularly for soil functioning. The proposed fabricated ecosystem (4.7 L × 1.2 W × 1.2 H m) focuses on the spatiotemporal integration of point sensors and imaging methods along the soil-plant-atmosphere continuum. Because energy and water fluxes are key environmental drivers, the designed setup was first applied to a multi-approach evapotranspiration investigation. Below the ground, electrical resistivity tomography (ERT) was combined with soil water sensors and a distributed temperature profiling system. Together, they provided the 3D monitoring of water and temperature changes, and thus an estimation of the evapotranspiration, as well as the interpretation of its below-ground controlling processes. Above-ground sensors supported a classical energy balance investigation that was compared with the lysimeter load changes and the ERT-based ET estimation. Our results provide first experimental evidence of water and temperature spatiotemporal variability at the lysimeter scale, and thus explain the discrepancies among the three estimated evapotranspiration time series and their seasonality. Beyond evapotranspiration, the multi-approach investigation of water and energy fluxes emphasizes how mesoscale setups can further support the development and upscaling of methods and models, as well as their integration and application under expected climate disturbances., Competing Interests: Declaration of competing interest The authors have no competing interests to declare., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery.
- Author
-
Falco N, Wainwright HM, Dafflon B, Ulrich C, Soom F, Peterson JE, Brown JB, Schaettle KB, Williamson M, Cothren JD, Ham RG, McEntire JA, and Hubbard SS
- Abstract
Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquisition and processing approaches that use unmanned aerial vehicles (UAVs) and surface geophysical techniques. In particular, we applied these approaches to a soybean farm in Arkansas to characterize the soil-plant coupled spatial and temporal heterogeneity, as well as to identify key environmental factors that influence plant growth and yield. UAV-based multitemporal acquisition of high-resolution RGB (red-green-blue) imagery and direct measurements were used to monitor plant height and photosynthetic activity. We present an algorithm that efficiently exploits the high-resolution UAV images to estimate plant spatial abundance and plant vigor throughout the growing season. Such plant characterization is extremely important for the identification of anomalous areas, providing easily interpretable information that can be used to guide near-real-time farming decisions. Additionally, high-resolution multitemporal surface geophysical measurements of apparent soil electrical conductivity were used to estimate the spatial heterogeneity of soil texture. By integrating the multiscale multitype soil and plant datasets, we identified the spatiotemporal co-variance between soil properties and plant development and yield. Our novel approach for early season monitoring of plant spatial abundance identified areas of low productivity controlled by soil clay content, while temporal analysis of geophysical data showed the impact of soil moisture and irrigation practice (controlled by topography) on plant dynamics. Our study demonstrates the effective coupling of UAV data products with geophysical data to extract critical information for farm management.
- Published
- 2021
- Full Text
- View/download PDF
5. The Snowmelt Niche Differentiates Three Microbial Life Strategies That Influence Soil Nitrogen Availability During and After Winter.
- Author
-
Sorensen PO, Beller HR, Bill M, Bouskill NJ, Hubbard SS, Karaoz U, Polussa A, Steltzer H, Wang S, Williams KH, Wu Y, and Brodie EL
- Abstract
Soil microbial biomass can reach its annual maximum pool size beneath the winter snowpack and is known to decline abruptly following snowmelt in seasonally snow-covered ecosystems. Observed differences in winter versus summer microbial taxonomic composition also suggests that phylogenetically conserved traits may permit winter- versus summer-adapted microorganisms to occupy distinct niches. In this study, we sought to identify archaea, bacteria, and fungi that are associated with the soil microbial bloom overwinter and the subsequent biomass collapse following snowmelt at a high-altitude watershed in central Colorado, United States. Archaea, bacteria, and fungi were categorized into three life strategies (Winter-Adapted, Snowmelt-Specialist, Spring-Adapted) based upon changes in abundance during winter, the snowmelt period, and after snowmelt in spring. We calculated indices of phylogenetic relatedness (archaea and bacteria) or assigned functional attributes (fungi) to organisms within life strategies to infer whether phylogenetically conserved traits differentiate Winter-Adapted, Snowmelt-Specialist, and Spring-Adapted groups. We observed that the soil microbial bloom was correlated in time with a pulse of snowmelt infiltration, which commenced 65 days prior to soils becoming snow-free. A pulse of nitrogen (N, as nitrate) occurred after snowmelt, along with a collapse in the microbial biomass pool size, and an increased abundance of nitrifying archaea and bacteria (e.g., Thaumarchaeota, Nitrospirae). Winter- and Spring-Adapted archaea and bacteria were phylogenetically clustered, suggesting that phylogenetically conserved traits allow Winter- and Spring-Adapted archaea and bacteria to occupy distinct niches. In contrast, Snowmelt-Specialist archaea and bacteria were phylogenetically overdispersed, suggesting that the key mechanism(s) of the microbial biomass crash are likely to be density-dependent (e.g., trophic interactions, competitive exclusion) and affect organisms across a broad phylogenetic spectrum. Saprotrophic fungi were the dominant functional group across fungal life strategies, however, ectomycorrhizal fungi experienced a large increase in abundance in spring. If well-coupled plant-mycorrhizal phenology currently buffers ecosystem N losses in spring, then changes in snowmelt timing may alter ecosystem N retention potential. Overall, we observed that snowmelt separates three distinct soil niches that are occupied by ecologically distinct groups of microorganisms. This ecological differentiation is of biogeochemical importance, particularly with respect to the mobilization of nitrogen during winter, before and after snowmelt., (Copyright © 2020 Sorensen, Beller, Bill, Bouskill, Hubbard, Karaoz, Polussa, Steltzer, Wang, Williams, Wu and Brodie.)
- Published
- 2020
- Full Text
- View/download PDF
6. Predicting sedimentary bedrock subsurface weathering fronts and weathering rates.
- Author
-
Wan J, Tokunaga TK, Williams KH, Dong W, Brown W, Henderson AN, Newman AW, and Hubbard SS
- Abstract
Although bedrock weathering strongly influences water quality and global carbon and nitrogen budgets, the weathering depths and rates within subsurface are not well understood nor predictable. Determination of both porewater chemistry and subsurface water flow are needed in order to develop more complete understanding and obtain weathering rates. In a long-term field study, we applied a multiphase approach along a mountainous watershed hillslope transect underlain by marine shale. Here we report three findings. First, the deepest extent of the water table determines the weathering front, and the range of annually water table oscillations determines the thickness of the weathering zone. Below the lowest water table, permanently water-saturated bedrock remains reducing, preventing deeper pyrite oxidation. Secondly, carbonate minerals and potentially rock organic matter share the same weathering front depth with pyrite, contrary to models where weathering fronts are stratified. Thirdly, the measurements-based weathering rates from subsurface shale are high, amounting to base cation exports of about 70 kmol
c ha-1 y-1 , yet consistent with weathering of marine shale. Finally, by integrating geochemical and hydrological data we present a new conceptual model that can be applied in other settings to predict weathering and water quality responses to climate change.- Published
- 2019
- Full Text
- View/download PDF
7. Microbial communities across a hillslope-riparian transect shaped by proximity to the stream, groundwater table, and weathered bedrock.
- Author
-
Lavy A, McGrath DG, Matheus Carnevali PB, Wan J, Dong W, Tokunaga TK, Thomas BC, Williams KH, Hubbard SS, and Banfield JF
- Abstract
Watersheds are important suppliers of freshwater for human societies. Within mountainous watersheds, microbial communities impact water chemistry and element fluxes as water from precipitation events discharge through soils and underlying weathered rock, yet there is limited information regarding the structure and function of these communities. Within the East River, CO watershed, we conducted a depth-resolved, hillslope to riparian zone transect study to identify factors that control how microorganisms are distributed and their functions. Metagenomic and geochemical analyses indicate that distance from the East River and proximity to groundwater and underlying weathered shale strongly impact microbial community structure and metabolic potential. Riparian zone microbial communities are compositionally distinct, from the phylum down to the species level, from all hillslope communities. Bacteria from phyla lacking isolated representatives consistently increase in abundance with increasing depth, but only in the riparian zone saturated sediments we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities are functionally differentiated from hillslope communities based on their capacities for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is prominent at depth in weathered shale and saturated riparian zone sediments and could impact water quality. We anticipate that the drivers of community composition and metabolic potential identified throughout the studied transect will predict patterns across the larger watershed hillslope system., Competing Interests: The authors declare no competing interests in this study.
- Published
- 2019
- Full Text
- View/download PDF
8. Evaluating temporal controls on greenhouse gas (GHG) fluxes in an Arctic tundra environment: An entropy-based approach.
- Author
-
Arora B, Wainwright HM, Dwivedi D, Vaughn LJS, Curtis JB, Torn MS, Dafflon B, and Hubbard SS
- Abstract
There is significant spatial and temporal variability associated with greenhouse gas (GHG) fluxes in high-latitude Arctic tundra environments. The objectives of this study are to investigate temporal variability in CO
2 and CH4 fluxes at Barrow, AK and to determine the factors causing this variability using a novel entropy-based classification scheme. In particular, we analyzed which geomorphic, soil, vegetation and climatic properties most explained the variability in GHG fluxes (opaque chamber measurements) during the growing season over three successive years. Results indicate that multi-year variability in CO2 fluxes was primarily associated with soil temperature variability as well as vegetation dynamics during the early and late growing season. Temporal variability in CH4 fluxes was primarily associated with changes in vegetation during the growing season and its interactions with primary controls like seasonal thaw. Polygonal ground features, which are common to Arctic regions, also demonstrated significant multi-year variability in GHG fluxes. Our results can be used to prioritize field sampling strategies, with an emphasis on measurements collected at locations and times that explain the most variability in GHG fluxes. For example, we found that sampling primary environmental controls at the centers of high centered polygons in the month of September (when freeze-back period begins) can provide significant constraints on GHG flux variability - a requirement for accurately predicting future changes to GHG fluxes. Overall, entropy results document the impact of changing environmental conditions (e.g., warming, growing season length) on GHG fluxes, thus providing clues concerning the manner in which ecosystem properties may be shifted regionally in a future climate., (Copyright © 2018 Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
9. Using strontium isotopes to evaluate the spatial variation of groundwater recharge.
- Author
-
Christensen JN, Dafflon B, Shiel AE, Tokunaga TK, Wan J, Faybishenko B, Dong W, Williams KH, Hobson C, Brown ST, and Hubbard SS
- Abstract
Recharge of alluvial aquifers is a key component in understanding the interaction between floodplain vadose zone biogeochemistry and groundwater quality. The Rifle Site (a former U-mill tailings site) adjacent to the Colorado River is a well-established field laboratory that has been used for over a decade for the study of biogeochemical processes in the vadose zone and aquifer. This site is considered an exemplar of both a riparian floodplain in a semiarid region and a post-remediation U-tailings site. In this paper we present Sr isotopic data for groundwater and vadose zone porewater samples collected in May and July 2013 to build a mixing model for the fractional contribution of vadose zone porewater (i.e. recharge) to the aquifer and its variation across the site. The vadose zone porewater contribution to the aquifer ranged systematically from 0% to 38% and appears to be controlled largely by the microtopography of the site. The area-weighted average contribution across the site was 8% corresponding to a net recharge of 7.5 cm. Given a groundwater transport time across the site of ~1.5 to 3 years, this translates to a recharge rate between 5 and 2.5 cm/yr, and with the average precipitation to the site implies a loss from the vadose zone due to evapotranspiration of 83% to 92%, both ranges are in good agreement with previously published results by independent methods. A uranium isotopic (
234 U/238 U activity ratios) mixing model for groundwater and surface water samples indicates that a ditch across the site is hydraulically connected to the aquifer and locally significantly affects groundwater. Groundwater samples with high U concentrations attributed to natural bio-reduced zones have234 U/238 U activity ratios near 1, suggesting that the U currently being released to the aquifer originated from the former U-mill tailings., (Copyright © 2018 Elsevier B.V. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
10. Landscape topography structures the soil microbiome in arctic polygonal tundra.
- Author
-
Taş N, Prestat E, Wang S, Wu Y, Ulrich C, Kneafsey T, Tringe SG, Torn MS, Hubbard SS, and Jansson JK
- Subjects
- Arctic Regions, Bacteria classification, Bacteria genetics, Bacteria metabolism, Carbon metabolism, Climate Change, Methane metabolism, Soil chemistry, Soil Microbiology, Tundra, Bacteria isolation & purification, Microbiota, Permafrost microbiology
- Abstract
In the Arctic, environmental factors governing microbial degradation of soil carbon (C) in active layer and permafrost are poorly understood. Here we determined the functional potential of soil microbiomes horizontally and vertically across a cryoperturbed polygonal landscape in Alaska. With comparative metagenomics, genome binning of novel microbes, and gas flux measurements we show that microbial greenhouse gas (GHG) production is strongly correlated to landscape topography. Active layer and permafrost harbor contrasting microbiomes, with increasing amounts of Actinobacteria correlating with decreasing soil C in permafrost. While microbial functions such as fermentation and methanogenesis were dominant in wetter polygons, in drier polygons genes for C mineralization and CH
4 oxidation were abundant. The active layer microbiome was poised to assimilate N and not to release N2 O, reflecting low N2 O flux measurements. These results provide mechanistic links of microbial metabolism to GHG fluxes that are needed for the refinement of model predictions.- Published
- 2018
- Full Text
- View/download PDF
11. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system.
- Author
-
Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, and Banfield JF
- Subjects
- Bacteria classification, Bacteria metabolism, Carbon metabolism, Ecosystem, Nitrogen metabolism, Phylogeny, RNA, Ribosomal, 16S genetics, Sulfur metabolism, Bacteria genetics, Genome, Microbial genetics, Geologic Sediments microbiology, Groundwater microbiology, Metagenomics
- Abstract
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.
- Published
- 2016
- Full Text
- View/download PDF
12. Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.
- Author
-
Long PE, Williams KH, Hubbard SS, and Banfield JF
- Subjects
- Atmosphere, Biodiversity, Carbon metabolism, Gases, Genome, Microbial, Geologic Sediments, Greenhouse Effect, Groundwater, Metabolic Networks and Pathways physiology, Microbial Consortia genetics, Microbial Interactions physiology, Nitrogen metabolism, Nitrogen Cycle, Soil chemistry, Sulfur metabolism, Symbiosis physiology, Climate, Ecosystem, Metagenomics, Microbial Consortia physiology, Soil Microbiology
- Abstract
Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
13. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales.
- Author
-
Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, and Slater LD
- Abstract
A review of the emergence and development of hydrogeophysicsOutline of emerging techniques in hydrogeophysicsPresentation of future opportunities in hydrogeophysics.
- Published
- 2015
- Full Text
- View/download PDF
14. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets.
- Author
-
Gangodagamage C, Rowland JC, Hubbard SS, Brumby SP, Liljedahl AK, Wainwright H, Wilson CJ, Altmann GL, Dafflon B, Peterson J, Ulrich C, Tweedie CE, and Wullschleger SD
- Abstract
Landscape attributes that vary with microtopography, such as active layer thickness ( ALT ), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km
2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r2 = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT , consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.- Published
- 2014
- Full Text
- View/download PDF
15. A new model for the biodegradation kinetics of oil droplets: application to the Deepwater Horizon oil spill in the Gulf of Mexico.
- Author
-
Vilcáez J, Li L, and Hubbard SS
- Abstract
Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. Existing models for oil biodegradation kinetics are mostly for dissolved oil. This work developed a new mathematical model for the biodegradation of oil droplets and applied the model to estimate the time scale for oil biodegradation under conditions relevant to the Deepwater Horizon oil spill in the Gulf of Mexico. In the model, oil is composed of droplets of various sizes following the gamma function distribution. Each oil droplet shrinks during the microbe-mediated degradation at the oil-water interface. Using our developed model, we find that the degradation of oil droplets typically goes through two stages. The first stage is characterized by microbial activity unlimited by oil-water interface with higher biodegradation rates than that of the dissolved oil. The second stage is governed by the availability of the oil-water interface, which results in much slower rates than that of soluble oil. As a result, compared to that of the dissolved oil, the degradation of oil droplets typically starts faster and then quickly slows down, ultimately reaching a smaller percentage of degraded oil in longer time. The availability of the water-oil interface plays a key role in determining the rates and extent of degradation. We find that several parameters control biodegradation rates, including size distribution of oil droplets, initial microbial concentrations, initial oil concentration and composition. Under conditions relevant to the Deepwater Horizon spill, we find that the size distribution of oil droplets (mean and coefficient of variance) is the most important parameter because it determines the availability of the oil-water interface. Smaller oil droplets with larger variance leads to faster and larger extent of degradation. The developed model will be useful for evaluating transport and fate of spilled oil, different remediation strategies, and risk assessment.
- Published
- 2013
- Full Text
- View/download PDF
16. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
- Author
-
Bea SA, Wainwright H, Spycher N, Faybishenko B, Hubbard SS, and Denham ME
- Subjects
- Adsorption, Groundwater, Hydrogen-Ion Concentration, Radioactive Waste, South Carolina, Water Movements, Environmental Restoration and Remediation, Models, Theoretical, Uranium chemistry, Water Pollutants, Radioactive chemistry
- Abstract
Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and Al concentrations at multiple locations. Mineral dissolution and precipitation combined with adsorption reactions on goethite and kaolinite (the main minerals present with quartz) could buffer pH at the site for long periods of time. UQ analysis using the Morris one-at-a-time (OAT) method indicates that the model/parameter is most sensitive to the pH of the waste solution, discharge rates, and the reactive surface area available for adsorption. However, as a key finding, UQ analysis also indicates that this model (and parameters) sensitivity evolves in space and time, and its understanding could be crucial to assess the temporal efficiency of a remediation strategy in contaminated sites. Results also indicate that residual U(VI) and H(+) adsorbed in the vadose zone, as well as aquifer permeability, could have a significant impact on the acidic plume long-term mobility., (Copyright © 2013 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
17. Effect of dissolved CO2 on a shallow groundwater system: a controlled release field experiment.
- Author
-
Trautz RC, Pugh JD, Varadharajan C, Zheng L, Bianchi M, Nico PS, Spycher NF, Newell DL, Esposito RA, Wu Y, Dafflon B, Hubbard SS, and Birkholzer JT
- Subjects
- Arsenic analysis, Carbon Sequestration, Fluorides analysis, Geologic Sediments chemistry, Hydrogen-Ion Concentration, Metals analysis, Models, Theoretical, Silicon Dioxide, Solubility, Water Movements, Water Pollutants, Chemical analysis, Carbon Dioxide chemistry, Groundwater chemistry, Water Pollutants, Chemical chemistry
- Abstract
Capturing carbon dioxide (CO(2)) emissions from industrial sources and injecting the emissions deep underground in geologic formations is one method being considered to control CO(2) concentrations in the atmosphere. Sequestering CO(2) underground has its own set of environmental risks, including the potential migration of CO(2) out of the storage reservoir and resulting acidification and release of trace constituents in shallow groundwater. A field study involving the controlled release of groundwater containing dissolved CO(2) was initiated to investigate potential groundwater impacts. Dissolution of CO(2) in the groundwater resulted in a sustained and easily detected decrease of ~3 pH units. Several trace constituents, including As and Pb, remained below their respective detections limits and/or at background levels. Other constituents (Ba, Ca, Cr, Sr, Mg, Mn, and Fe) displayed a pulse response, consisting of an initial increase in concentration followed by either a return to background levels or slightly greater than background. This suggests a fast-release mechanism (desorption, exchange, and/or fast dissolution of small finite amounts of metals) concomitant in some cases with a slower release potentially involving different solid phases or mechanisms. Inorganic constituents regulated by the U.S. Environmental Protection Agency remained below their respective maximum contaminant levels throughout the experiment.
- Published
- 2013
- Full Text
- View/download PDF
18. Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods.
- Author
-
Dafflon B, Wu Y, Hubbard SS, Birkholzer JT, Daley TM, Pugh JD, Peterson JE, and Trautz RC
- Subjects
- Carbon Sequestration, Electric Conductivity, Environmental Monitoring, Geological Phenomena, Hydrogen-Ion Concentration, Carbon Dioxide analysis, Groundwater analysis, Water Pollutants, Chemical analysis
- Abstract
The risk of CO(2) leakage from a properly permitted deep geologic storage facility is expected to be very low. However, if leakage occurs it could potentially impact potable groundwater quality. Dissolved CO(2) in groundwater decreases pH, which can mobilize naturally occurring trace metals commonly contained in aquifer sediments. Observing such processes requires adequate monitoring strategies. Here, we use laboratory and field experiments to explore the sensitivity of time-lapse complex resistivity responses for remotely monitoring dissolved CO(2) distribution and geochemical transformations that may impact groundwater quality. Results show that electrical resistivity and phase responses correlate well with dissolved CO(2) injection processes. Specifically, resistivity initially decreases due to increase of bicarbonate and dissolved species. As pH continues to decrease, the resistivity rebounds toward initial conditions due to the transition of bicarbonate into nondissociated carbonic acid, which reduces the total concentration of dissociated species and thus the water conductivity. An electrical phase decrease is also observed, which is interpreted to be driven by the decrease of surface charge density as well as potential mineral dissolution and ion exchange. Both laboratory and field experiments demonstrate the potential of field complex resistivity method for remotely monitoring changes in groundwater quality due to CO(2) leakage.
- Published
- 2013
- Full Text
- View/download PDF
19. Visual Data Analysis as an Integral Part of Environmental Management.
- Author
-
Meyer J, Bethel EW, Horsman JL, Hubbard SS, Krishnan H, Romosan A, Keating EH, Monroe L, Strelitz R, Moore P, Taylor G, Torkian B, Johnson TC, and Gorton I
- Abstract
The U.S. Department of Energy's (DOE) Office of Environmental Management (DOE/EM) currently supports an effort to understand and predict the fate of nuclear contaminants and their transport in natural and engineered systems. Geologists, hydrologists, physicists and computer scientists are working together to create models of existing nuclear waste sites, to simulate their behavior and to extrapolate it into the future. We use visualization as an integral part in each step of this process. In the first step, visualization is used to verify model setup and to estimate critical parameters. High-performance computing simulations of contaminant transport produces massive amounts of data, which is then analyzed using visualization software specifically designed for parallel processing of large amounts of structured and unstructured data. Finally, simulation results are validated by comparing simulation results to measured current and historical field data. We describe in this article how visual analysis is used as an integral part of the decision-making process in the planning of ongoing and future treatment options for the contaminated nuclear waste sites. Lessons learned from visually analyzing our large-scale simulation runs will also have an impact on deciding on treatment measures for other contaminated sites.
- Published
- 2012
- Full Text
- View/download PDF
20. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
- Author
-
Gasperikova E, Hubbard SS, Watson DB, Baker GS, Peterson JE, Kowalsky MB, Smith M, and Brooks S
- Subjects
- Models, Theoretical, Water Movements, Electricity, Environmental Monitoring methods
- Abstract
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales., (Published by Elsevier B.V.)
- Published
- 2012
- Full Text
- View/download PDF
21. Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: the F-Area Savannah River Site.
- Author
-
Wan J, Tokunaga TK, Dong W, Denham ME, and Hubbard SS
- Subjects
- Environmental Monitoring, Nitrates analysis, South Carolina, Tritium analysis, Uranium analysis, Water Movements, Geologic Sediments analysis, Groundwater analysis, Models, Theoretical, Radioactive Waste, Water Pollutants, Radioactive analysis
- Abstract
At the Savannah River Site's F-Area, wastewaters containing radionuclides were disposed into seepage basins for decades. After closure and capping in 1991, the U.S. Department of Energy (DOE) has being monitoring and remediating the groundwater plume. Despite numerous studies of the plume, its persistence for over 20 years has not been well understood. To better understand the plume dynamics, a limited number of deep boreholes were drilled to determine the current plume characteristics. A mixing model was developed to predict plume tritium and nitrate concentrations. We found that the plume trailing edges have emerged for some contaminants, and that contaminant recharge from the basin's vadose zone is still important. The model's estimated time-dependent basin drainage rates combined with dilution from natural recharge successfully predicted plume tritium and nitrate concentrations. This new understanding of source zone influences can help guide science-based remediation, and improve predictions of the natural attenuation timeframes.
- Published
- 2012
- Full Text
- View/download PDF
22. Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale.
- Author
-
Li L, Gawande N, Kowalsky MB, Steefel CI, and Hubbard SS
- Subjects
- Bacteria metabolism, Biodegradation, Environmental, Ferric Compounds metabolism, Geologic Sediments chemistry, Geologic Sediments microbiology, Uranium metabolism
- Abstract
It has been demonstrated in laboratory systems that U(VI) can be reduced to immobile U(IV) by bacteria in natural environments. The ultimate efficacy of bioreduction at the field scale, however, is often challenging to quantify and depends on site characteristics. In this work, uranium bioreduction rates at the field scale are quantified, for the first time, using an integrated approach. The approach combines field data, inverse and forward hydrological and reactive transport modeling, and quantification of reduction rates at different spatial scales. The approach is used to explore the impact of local scale (tens of centimeters) parameters and processes on field scale (tens of meters) system responses to biostimulation treatments and the controls of physicochemical heterogeneity on bioreduction rates. Using the biostimulation experiments at the Department of Energy Old Rifle site, our results show that the spatial distribution of hydraulic conductivity and solid phase mineral (Fe(III)) play a critical role in determining the field-scale bioreduction rates. Due to the dependence on Fe-reducing bacteria, field-scale U(VI) bioreduction rates were found to be largely controlled by the abundance of Fe(III) minerals at the vicinity of the injection wells and by the presence of preferential flow paths connecting injection wells to down gradient Fe(III) abundant areas.
- Published
- 2011
- Full Text
- View/download PDF
23. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation.
- Author
-
Wu Y, Ajo-Franklin JB, Spycher N, Hubbard SS, Zhang G, Williams KH, Taylor J, Fujita Y, and Smith R
- Abstract
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.
- Published
- 2011
- Full Text
- View/download PDF
24. Lessons learned from bacterial transport research at the South Oyster Site.
- Author
-
Scheibe TD, Hubbard SS, Onstott TC, and Deflaun MF
- Subjects
- Virginia, Bacteria isolation & purification, Water Microbiology
- Abstract
This paper provides a review of bacterial transport experiments conducted by a multiinvestigator, multiinstitution, multidisciplinary team of researchers under the auspices of the U.S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically, and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators., (© 2011, Battelle Memorial Institute. Ground Water © 2011, National Ground Water Association.)
- Published
- 2011
- Full Text
- View/download PDF
25. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.
- Author
-
Li L, Steefel CI, Kowalsky MB, Englert A, and Hubbard SS
- Subjects
- Biodegradation, Environmental, Colorado, Water Movements, Biomass, Iron chemistry, Models, Chemical, Uranium chemistry, Water Pollutants, Radioactive chemistry
- Abstract
Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an overestimation of the overall accumulation of iron-reducing bacteria, as well as the rate and extent of iron reduction. Surprisingly, the model predicts that the total amount of uranium being reduced in the heterogeneous 2D system was similar to that in the 1D homogeneous system, suggesting that the overall uranium bioremediation efficacy may not be significantly affected by the heterogeneities of Fe(III) content in the down-gradient regions. Rather, the characteristics close to the vicinity of the injection wells might be crucial in determining the overall efficacy of uranium bioremediation. These findings have important implications not only for uranium bioremediation at the Rifle site and for bioremediation of other redox sensitive contaminants at sites with similar characteristics, but also for the development of optimal amendment delivery strategies in other settings., (Copyright 2009 Elsevier B.V. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
26. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation.
- Author
-
Williams KH, Kemna A, Wilkins MJ, Druhan J, Arntzen E, N'Guessan AL, Long PE, Hubbard SS, and Banfield JF
- Subjects
- Colorado, Electricity, Ferrous Compounds chemistry, Fresh Water chemistry, Geological Phenomena, Models, Theoretical, Nanoparticles chemistry, Sulfides chemistry, Biodegradation, Environmental, Environmental Monitoring methods, Geologic Sediments chemistry, Geologic Sediments microbiology, Geology methods, Water Pollutants, Chemical analysis
- Abstract
Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) and was dependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurementsfor monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.
- Published
- 2009
- Full Text
- View/download PDF
27. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado.
- Author
-
Li L, Steefel CI, Williams KH, Wilkins MJ, and Hubbard SS
- Subjects
- Bacteria metabolism, Colorado, Models, Chemical, Oxidation-Reduction, Porosity, Thermodynamics, Water Supply, Biodegradation, Environmental, Biomass, Minerals chemistry, Soil Pollutants, Radioactive chemistry, Uranium chemistry, Water Pollutants, Radioactive chemistry
- Abstract
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can bean effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.
- Published
- 2009
- Full Text
- View/download PDF
28. Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations.
- Author
-
Englert A, Hubbard SS, Williams KH, Li L, and Steefel CI
- Subjects
- Metals chemistry, Water Movements, Biodegradation, Environmental, Geologic Sediments chemistry, Water Supply
- Abstract
For guiding optimal design and interpretation of in situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important. Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging end flow rerouting.
- Published
- 2009
- Full Text
- View/download PDF
29. In situ long-term reductive bioimmobilization of Cr(VI) in groundwater using hydrogen release compound.
- Author
-
Faybishenko B, Hazen TC, Long PE, Brodie EL, Conrad ME, Hubbard SS, Christensen JN, Joyner D, Borglin SE, Chakraborty R, Williams KH, Peterson JE, Chen J, Brown ST, Tokunaga TK, Wan J, Firestone M, Newcomer DR, Resch CT, Cantrell KJ, Willett A, and Koenigsberg S
- Subjects
- Animals, Biomass, Nuclear Reactors, Oxidation-Reduction, Polymers chemistry, Washington, Biodegradation, Environmental, Chromium chemistry, Hydrogen chemistry, Water Pollutants, Chemical chemistry, Water Supply analysis
- Abstract
The results of a field experiment designed to test the effectiveness of a novel approach for long-term, in situ bioimmobilization of toxic and soluble Cr(VI) in groundwater using a hydrogen release compound (HRC)--a slow release glycerol polylactate--are described. The field experiment was conducted at the Hanford Site (Washington), a U.S. Department of Energy nuclear production facility, using a combination of hydrogeological, geophysical, geochemical, and microbiological measurements and analyses of water samples and sediments. The results of this experiment show that a single HRC injection into groundwater stimulates an increase in biomass, a depletion of terminal electron acceptors O2, NO3-, and SO4(2-), and an increase in Fe2+, resulting in a significant decrease in soluble Cr(VI). The Cr(VI) concentration has remained below the background concentration in the downgradient pumping/ monitoring well, and below the detection limit in the injection well for more than 3 years after the HRC injection. The degree of sustainability of Cr(VI) reductive bioimmobilization under different redox conditions at this and other contaminated sites is currently under study.
- Published
- 2008
- Full Text
- View/download PDF
30. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation.
- Author
-
Druhan JL, Conrad ME, Williams KH, N'Guessan L, Long PE, and Hubbard SS
- Subjects
- Biodegradation, Environmental, Colorado, Hydrogen-Ion Concentration, Oxidation-Reduction, Sulfates isolation & purification, Sulfur Isotopes, Time Factors, Sulfates metabolism, Sulfur-Reducing Bacteria metabolism, Uranium isolation & purification
- Abstract
Aqueous uranium (U(VI)) concentrations in a contaminated aquifer in Rifle Colorado have been successfully lowered through electron donor amended bioreduction. Samples collected during the acetate amendment experiment were analyzed for aqueous concentrations of Fe(ll), sulfate, sulfide, acetate, U(VI), and delta(34)S of sulfate and sulfide to explore the utility of sulfur isotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment of up to 7% per hundred in delta(34)S of sulfate in down-gradient monitoring wells indicates a transition to elevated bacterial sulfate reduction. A depletion in Fe(II), sulfate, and sulfide concentrations atthe height of sulfate reduction, along with an increase in the delta(34)S of sulfide to levels approaching the delta(34)S values of sulfate, indicates sulfate limited conditions concurrent with a rebound in U(VI) concentrations. Upon cessation of acetate amendment, sulfate and sulfide concentrations increased, while delta(34)S values of sulfide returned to less than -20% per hundred and sulfate delta(34)S decreased to near-background values, indicating lower levels of sulfate reduction accompanied by a corresponding drop in U(VI). Results indicate a transition between electron donor and sulfate-limited conditions at the height of sulfate reduction and suggest stability of biogenic FeS precipitates following the end of acetate amendment.
- Published
- 2008
- Full Text
- View/download PDF
31. Geophysical monitoring of hydrological and biogeochemical transformations associated with Cr(VI) bioremediation.
- Author
-
Hubbard SS, Williams K, Conrad ME, Faybishenko B, Peterson J, Chen J, Long P, and Hazent T
- Subjects
- Geological Phenomena, Geology, Biotransformation, Chromium metabolism, Environmental Monitoring methods, Environmental Restoration and Remediation methods
- Abstract
Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI) bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic data sets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical data sets, we then interpreted time-lapse seismic and radar tomographic data sets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring data sets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring data set and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity.
- Published
- 2008
- Full Text
- View/download PDF
32. Geophysical imaging of stimulated microbial biomineralization.
- Author
-
Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, and Banfield JF
- Subjects
- Acoustics, Biodegradation, Environmental, Chemical Precipitation, Desulfovibrio vulgaris ultrastructure, Geologic Sediments microbiology, Microscopy, Electron, Desulfovibrio vulgaris metabolism, Diagnostic Imaging methods, Geologic Sediments chemistry, Metals, Heavy chemistry, Sulfides chemistry, Water Pollutants, Chemical analysis
- Abstract
Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction under dynamic flow conditions. Alterations in sediment characteristics resulting from microbe-mediated sulfide mineral precipitation were concomitant with changes in complex resistivity and acoustic wave propagation signatures. The sequestration of zinc and iron in insoluble sulfides led to alterations in the ability of the pore fluid to conduct electrical charge and of the saturated sediments to dissipate acoustic energy. These changes resulted directly from the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. Scanning and transmission electron microscopy (SEM and TEM) confirmed the sulfides to be associated with cell surfaces, with precipitates ranging from aggregates of individual 3-5 nm nanocrystals to larger assemblages of up to 10-20 microm in diameter. Anomalies in the geophysical data reflected the distribution of mineral precipitates and biomass over space and time, with temporal variations in the signals corresponding to changes in the aggregation state of the nanocrystalline sulfides. These results suggest the potential for using geophysical techniques to image certain subsurface biogeochemical processes, such as those accompanying the bioremediation of metal-contaminated aquifers.
- Published
- 2005
- Full Text
- View/download PDF
33. Ferrographic tracking of bacterial transport in the field at the narrow channel focus area, Oyster, VA.
- Author
-
Johnson WP, Zhang P, Fuller ME, Scheibe TD, Mailloux BJ, Onstott TC, Deflaun MF, Hubbard SS, Radtke J, Kovacik WP, and Holben W
- Subjects
- Bacteria genetics, Bacteria metabolism, Bacteriological Techniques, Biodegradation, Environmental, Colony Count, Microbial methods, Comamonas genetics, Comamonas isolation & purification, Comamonas metabolism, DNA, Bacterial genetics, DNA, Bacterial isolation & purification, Ferric Compounds, Magnetics, Polymerase Chain Reaction, Virginia, Water Pollutants, Chemical metabolism, Bacteria isolation & purification, Water Microbiology
- Abstract
The first results from an innovative bacterial tracking technique, ferrographic capture, applied to bacterial transport in groundwater are reported in this paper. Ferrographic capture was used to analyze samples during an October 1999 bacterial injection experiment at the Narrow Channel focus area of the South Oyster site, VA. Data obtained using this method showed that the timing of bacterial breakthrough was controlled by physical (hydraulic conductivity) heterogeneity in the vertical dimension as opposed to variation in sedimentsurface or aqueous chemical properties. Ferrographic tracking yielded results that compared well with results from other tracking techniques over a concentration range of 8 orders of magnitude and provided a low detection limit relative to most other bacterial tracking techniques. The low quantitation limit of this method (approximately 20 cells/mL) allowed observation of transport of an adhesion-deficient bacterium over distances greater than 20 m in the fine sand aquifer underlying this site.
- Published
- 2001
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.