8 results on '"Hill TDM"'
Search Results
2. Anti-seizure effects of JNJ-54175446 in the intra-amygdala kainic acid model of drug-resistant temporal lobe epilepsy in mice.
- Author
-
Mamad O, Heiland M, Lindner AU, Hill TDM, Ronroy RM, Rentrup K, Sanz-Rodriguez A, Langa E, Heller JP, Moreno O, Llop J, Bhattacharya A, Palmer JA, Ceusters M, Engel T, and Henshall DC
- Abstract
There remains a need for new drug targets for treatment-resistant temporal lobe epilepsy. The ATP-gated P2X7 receptor coordinates neuroinflammatory responses to tissue injury. Previous studies in mice reported that the P2X7 receptor antagonist JNJ-47965567 suppressed spontaneous seizures in the intraamygdala kainic acid model of epilepsy and reduced attendant gliosis in the hippocampus. The drug-resistance profile of this model is not fully characterised, however, and newer P2X7 receptor antagonists with superior pharmacokinetic profiles have recently entered clinical trials. Using telemetry-based continuous EEG recordings in mice, we demonstrate that spontaneous recurrent seizures in the intraamygdala kainic acid model are refractory to the common anti-seizure medicine levetiracetam. In contrast, once-daily dosing of JNJ-54175446 (30 mg/kg, intraperitoneal) resulted in a significant reduction in spontaneous recurrent seizures which lasted several days after the end of drug administration. Using a combination of immunohistochemistry and ex vivo radiotracer assay, we find that JNJ-54175446-treated mice at the end of recordings display a reduction in astrogliosis and altered microglia process morphology within the ipsilateral CA3 subfield of the hippocampus, but no difference in P2X7 receptor surface expression. The present study extends the characterisation of the drug-resistance profile of the intraamygdala kainic acid model in mice and provides further evidence that targeting the P2X7 receptor may have therapeutic applications in the treatment of temporal lobe epilepsy., Competing Interests: Authors AB, JP and MC are/were employees by Neuroscience, Janssen Pharmaceutical Research and Development, LLC. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that this study received funding from Janssen Pharmaceutical Research & Development. The funder had the following involvement in the study: original conceptualization and experimental design, selection of methodology, provision of JNJ-54175446 and measurement of plasma and brain concentrations of JNJ-54175446 and levetiracetam, researcher supervision, reviewing and editing the manuscript, and acquisition of funding., (Copyright © 2024 Mamad, Heiland, Lindner, Hill, Ronroy, Rentrup, Sanz-Rodriguez, Langa, Heller, Moreno, Llop, Bhattacharya, Palmer, Ceusters, Engel and Henshall.)
- Published
- 2024
- Full Text
- View/download PDF
3. Brain cell-specific origin of circulating microRNA biomarkers in experimental temporal lobe epilepsy.
- Author
-
Brindley E, Heiland M, Mooney C, Diviney M, Mamad O, Hill TDM, Yan Y, Venø MT, Reschke CR, Batool A, Langa E, Sanz-Rodriguez A, Heller JP, Morris G, Conboy K, Kjems J, Brennan GP, and Henshall DC
- Abstract
The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy., Competing Interests: YY and MV were employed by Omiics ApS. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Brindley, Heiland, Mooney, Diviney, Mamad, Hill, Yan, Venø, Reschke, Batool, Langa, Sanz-Rodriguez, Heller, Morris, Conboy, Kjems, Brennan and Henshall.)
- Published
- 2023
- Full Text
- View/download PDF
4. MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control.
- Author
-
Heiland M, Connolly NMC, Mamad O, Nguyen NT, Kesavan JC, Langa E, Fanning K, Sanfeliu A, Yan Y, Su J, Venø MT, Costard LS, Neubert V, Engel T, Hill TDM, Freiman TM, Mahesh A, Tiwari VK, Rosenow F, Bauer S, Kjems J, Morris G, and Henshall DC
- Subjects
- Humans, Mice, Rats, Animals, Seizures chemically induced, Seizures genetics, Seizures metabolism, NAV1.1 Voltage-Gated Sodium Channel genetics, NAV1.1 Voltage-Gated Sodium Channel metabolism, NAV1.3 Voltage-Gated Sodium Channel genetics, Induced Pluripotent Stem Cells metabolism, Epilepsy, MicroRNAs genetics, MicroRNAs metabolism, Voltage-Gated Sodium Channels genetics
- Abstract
There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a , Scn2a , and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A , and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.
- Published
- 2023
- Full Text
- View/download PDF
5. BICS01 Mediates Reversible Anti-seizure Effects in Brain Slice Models of Epilepsy.
- Author
-
Morris G, Heiland M, Lamottke K, Guan H, Hill TDM, Zhou Y, Zhu Q, Schorge S, and Henshall DC
- Abstract
Drug-resistant epilepsy remains a significant clinical and societal burden, with one third of people with epilepsy continuing to experience seizures despite the availability of around 30 anti-seizure drugs (ASDs). Further, ASDs often have substantial adverse effects, including impacts on learning and memory. Therefore, it is important to develop new ASDs, which may be more potent or better tolerated. Here, we report the preliminary preclinical evaluation of BICS01, a synthetic product based on a natural compound, as a potential ASD. To model seizure-like activity in vitro , we prepared hippocampal slices from adult male Sprague Dawley rats, and elicited epileptiform bursting using high extracellular potassium. BICS01 (200 μM) rapidly and reversibly reduced the frequency of epileptiform bursting but did not change broad measures of network excitability or affect short-term synaptic facilitation. BICS01 was well tolerated following systemic injection at up to 1,000 mg/kg. However, we did not observe any protective effect of systemic BICS01 injection against acute seizures evoked by pentylenetetrazol. These results indicate that BICS01 is able to acutely reduce epileptiform activity in hippocampal networks. Further preclinical development studies to enhance pharmacokinetics and accumulation in the brain, as well as studies to understand the mechanism of action, are now required., Competing Interests: BICS01 was developed by Bicoll GmbH. KL is a full-time employee of Bicoll GmbH and HG, YZ, and QZ are full-time employees of Bicoll Biotechnology (Shanghai) Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Morris, Heiland, Lamottke, Guan, Hill, Zhou, Zhu, Schorge and Henshall.)
- Published
- 2022
- Full Text
- View/download PDF
6. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy.
- Author
-
Brennan GP, Bauer S, Engel T, Jimenez-Mateos EM, Del Gallo F, Hill TDM, Connolly NMC, Costard LS, Neubert V, Salvetti B, Sanz-Rodriguez A, Heiland M, Mamad O, Brindley E, Norwood B, Batool A, Raoof R, El-Naggar H, Reschke CR, Delanty N, Prehn JHM, Fabene P, Mooney C, Rosenow F, and Henshall DC
- Subjects
- Animals, Anticonvulsants pharmacology, Blood-Brain Barrier metabolism, Circulating MicroRNA drug effects, Disease Models, Animal, Electric Stimulation, Epilepsy, Temporal Lobe blood, Epilepsy, Temporal Lobe chemically induced, Excitatory Amino Acid Agonists toxicity, Kainic Acid toxicity, Male, Mice, Muscarinic Agonists toxicity, Perforant Pathway, Pilocarpine toxicity, Rats, Circulating MicroRNA genetics, Epilepsy, Temporal Lobe genetics
- Abstract
Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test., Competing Interests: Declaration of competing interest None., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
7. Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus.
- Author
-
Batool A, Hill TDM, Nguyen NT, Langa E, Diviney M, Mooney C, Brennan GP, Connolly NMC, Sanz-Rodriguez A, Cavanagh BL, and Henshall DC
- Abstract
Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis., (Copyright © 2020 Batool, Hill, Nguyen, Langa, Diviney, Mooney, Brennan, Connolly, Sanz-Rodriguez, Cavanagh and Henshall.)
- Published
- 2020
- Full Text
- View/download PDF
8. MicroRNAs as biomarkers and treatment targets in status epilepticus.
- Author
-
Brindley E, Hill TDM, and Henshall DC
- Subjects
- Animals, Biomarkers metabolism, Hippocampus metabolism, Hippocampus pathology, Humans, Oligonucleotides, Antisense administration & dosage, Seizures diagnosis, Seizures genetics, Seizures metabolism, Status Epilepticus drug therapy, Up-Regulation physiology, Drug Delivery Systems trends, MicroRNAs genetics, MicroRNAs metabolism, Status Epilepticus genetics, Status Epilepticus metabolism
- Abstract
Microribonucleic acids (miRNAs) are short noncoding ribonucleic acids (RNAs) that have been proposed as potential biomarkers for epilepsy, acute seizures, and status epilepticus. Various properties support their potential in this regard, including relative stability and amenability to rapid quantitation in biofluids. Several miRNAs are enriched in the brain and within specific cell types. Dysregulation of miRNAs has been reported in brain regions damaged by status epilepticus and in resected brain tissue from patients with drug-resistant epilepsy. Silencing miRNAs using antisense-like oligonucleotides termed antagomirs has been reported to suppress evoked and spontaneous seizures in animal models, indicating therapeutic applications. The prospect of miRNAs as mechanistic biomarkers is supported by recent studies showing blood levels of brain-enriched miRNAs increase after status epilepticus in rodents, and clinical studies have identified miRNAs upregulated in human cerebrospinal fluid after status epilepticus. It remains unproven, however, whether there are miRNAs that uniquely identify acute seizures, chronic epilepsy, or the process of epileptogenesis. Finally, efforts have turned to the challenge of proving that some of the circulating miRNAs actually originate from the brain. New models that feature a biochemically-labeled protein involved in miRNA function and restricted to specific brain cell types offer opportunities to resolve this issue. This review summarizes recent progress on miRNAs as diagnostic biomarkers of status epilepticus and considers some of the unanswered questions and future directions. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures., (Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.