Attachment of the circulating monocytes to the endothelium is the earliest detectable events during formation of atherosclerosis. The adhesion molecules, chemokines and matrix proteases genes were identified to be expressed in atherogenesis. Expressions of these genes may influence structural integrity of the luminal endothelium. The aim of this study is to relate changes in the ultrastructural morphology of the aortic luminal surface and gene expressions of the endothelial surface, chemokine and MMP-12 in normal and hypercholesterolemic rabbits. Luminal endothelial surface from rabbit aortic tissue was examined by scanning electron microscopy (SEM) using low vacuum mode to ascertain ultrastructural changes in development of atherosclerotic lesion. Gene expression of adhesion molecules, MCP-1 and MMP-12 were studied by Real-time PCR. Ultrastructural observations of the aortic luminal surface exhibited changes from normal regular smooth intact endothelium to irregular luminal surface including marked globular appearance and ruptures of the membrane layer. Real-time PCR demonstrated differentially expressed of studied genes in atherosclerotic tissues. The appearance of ultrastructural changes in aortic tissue of hypercholesterolemic rabbits is suggested to have relation with underlying changes of endothelial surface molecules, chemokine and MMP-12 gene expressions., {"references":["Walski, M., Chlopicki, S., Celary-Walska, R., Frontczak-Baniewicz, M.\nUltrastructural alterations of endothelium covering advanced\natherosclerotic plaque in human carotid artery visualised by scanning\nelectron microscope. J Physiol Pharmacol, 53(4 Pt 1): p. 713-23, 2002.","Wilhelm, M.G. and A.D. Cooper, Induction of atherosclerosis by human\nchylomicron remnants: a hypothesis. J Atheroscler Thromb, 10(3): p.\n132-9, 2003.","Cybulsky, M.I., Lichtman, A. H., Hajra, L., Iiyama, K. Leukocyte\nadhesion molecules in atherogenesis. Clin Chim Acta, 286(1-2): p. 207-\n18, 1999.","Fan, J. and T. Watanabe, Inflammatory reactions in the pathogenesis of\natherosclerosis. J Atheroscler Thromb, 10(2): p. 63-71, 2003.","Galkina, E. and K. Ley, Vascular adhesion molecules in atherosclerosis.\nArterioscler Thromb Vasc Biol, 27(11): p. 2292-301, 2007.","Kuzuya, M. and Iguchi, A. Role of matrix metalloproteinases in vascular\nremodeling. J Atheroscler Thromb, 10(5): p. 275-82, 2003.","Katsuda, S. and Kaji, T. Atherosclerosis and extracellular matrix. J\nAtheroscler Thromb, 10(5): p. 267-74, 2003.","Dollery, C.M. and Libby, P. Atherosclerosis and proteinase activation.\nCardiovasc Res, 69(3): p. 625-35, 2006.","Dollery, C.M., McEwan, J.R. and Henney, A.M. Matrix\nmetalloproteinases and cardiovascular disease. Circ Res, 77(5): p. 863-8,\n1995.\n[10] Dollery, C.M., Owen, C. A., Sukhova, G. K., Krettek, A., Shapiro, S. D.,\nand Libby, P. Neutrophil elastase in human atherosclerotic plaques:\nproduction by macrophages. Circulation, 107(22): p. 2829-36, 2003.\n[11] Halpert, I., Sires, U. I., Roby, J. D., Potter-Perigo, S., Wight, T. N.,\nShapiro, S. D., Welgus, H. G., Wickline, S. A., and Parks, W. C.\nMatrilysin is expressed by lipid-laden macrophages at sites of potential\nrupture in atherosclerotic lesions and localizes to areas of versican\ndeposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci\nU S A, 93(18): p. 9748-53, 1996.\n[12] Libby, P. and P.M. Ridker, Inflammation and atherosclerosis: role of Creactive\nprotein in risk assessment. Am J Med, 116 Suppl 6A: p. 9S-16S,\n2004.\n[13] Zeng, B., Prasan, A., Fung, K. C., Solanki, V., Bruce, D., Freedman, S.\nB. and Brieger, D. Elevated circulating levels of matrix\nmetalloproteinase-9 and -2 in patients with symptomatic coronary artery\ndisease. Intern Med J, 35(6): p. 331-5, 2005.\n[14] Fan, J., Wang, X.,Wu, L.,Matsumoto, S. I.,Liang, J.,Koike, T.,Ichikawa,\nT.,Sun, H.,Shikama, H.,Sasaguri, Y.,Watanabe, T. Macrophage-specific\noverexpression of human matrix metalloproteinase-12 in transgenic\nrabbits. Transgenic Res, 13(3): p. 261-9, 2004.\n[15] Yu, Y., Koike, T., Kitajima, S., Liu, E., Morimoto, M., Shiomi, M.,\nHatakeyama, K., Asada, Y., Wang, K. Y., Sasaguri, Y., Watanabe, T.\nTemporal and quantitative analysis of expression of metalloproteinases\n(MMPs) and their endogenous inhibitors in atherosclerotic lesions.\nHistol Histopathol, 23(12): p. 1503-16, 2008.\n[16] Morgan, A.R., Rerkasem, K., Gallagher, P. J., Zhang, B., Morris, G. E.,\nCalder, P. C., Grimble, R. F., Eriksson, P., McPheat, W. L., Shearman,\nC. P., Ye, S. Differences in matrix metalloproteinase-1 and matrix\nmetalloproteinase-12 transcript levels among carotid atherosclerotic\nplaques with different histopathological characteristics. Stroke, 35(6): p.\n1310-5, 2004.\n[17] Daley, S.J., Herderick, E. E., Cornhill, J. F., Rogers, K. A. Cholesterolfed\nand casein-fed rabbit models of atherosclerosis. Part 1: Differing\nlesion area and volume despite equal plasma cholesterol levels.\nArterioscler Thromb, 14(1): p. 95-104, 1994.\n[18] Daley, S.J., Klemp, K. F., Guyton, J. R., Rogers, K. A. Cholesterol-fed\nand casein-fed rabbit models of atherosclerosis. Part 2: Differing\nmorphological severity of atherogenesis despite matched plasma\ncholesterol levels. Arterioscler Thromb, 14(1): p. 105-41, 1994.\n[19] Aikawa, M., Rabkin, E., Okada, Y., Voglic, S. J., Clinton, S. K.,\nBrinckerhoff, C. E., Sukhova, G. K., Libby, P. Lipid lowering by diet\nreduces matrix metalloproteinase activity and increases collagen content\nof rabbit atheroma: a potential mechanism of lesion stabilization.\nCirculation, 97(24): p. 2433-44, 1998.\n[20] Ozer, N.K., Negis, Y., Aytan, N., Villacorta, L., Ricciarelli, R., Zingg, J.\nM., Azzi, A. Vitamin E inhibits CD36 scavenger receptor expression in\nhypercholesterolemic rabbits. Atherosclerosis, 184(1): p. 15-20. 2006.\n[21] Riedmuller, K., Metz, S., Bonaterra, G. A., Kelber, O., Weiser, D.,\nMetz, J., Kinscherf, R. Cholesterol diet and effect of long-term\nwithdrawal on plaque development and composition in the thoracic aorta\nof New Zealand White rabbits. Atherosclerosis, 210(2): p. 407-13, 2010.\n[22] de Bruijn, W.C. and W. van Mourik, Scanning electron microscopic\nobservations of endothelial changes in experimentally induced\natheromatosis of rabbit aortas. Virchows Arch A Pathol Anat Histol,\n365(1): p. 23-40, 1975.\n[23] Brevetti, G., V. Schiano, and M. Chiariello, Endothelial dysfunction: a\nkey to the pathophysiology and natural history of peripheral arterial\ndisease? Atherosclerosis, 197(1): p. 1-11, 2008.\n[24] Reidy, M.A. and D.E. Bowyer, Scanning electron microscope studies of\nrabbit aortic endothelium in areas of haemodynamic stress during\ninduction of fatty streaks. Virchows Arch A Pathol Anat Histol, 377(3):\np. 237-48, 1978.\n[25] Nitschmann, E., Berry, L., Bridge, S., Hatton, M. W., Richardson, M.,\nMonagle, P., Chan, A. K., Andrew, M. Morphological and biochemical\nfeatures affecting the antithrombotic properties of the aorta in adult\nrabbits and rabbit pups. Thromb Haemost, 79(5): p. 1034-40, 1998.\n[26] Matsuda, J., Takahashi, S. Ohkoshi, K., Kaminaka, K., Kaminaka, S.,\nNozaki, C., Maeda, H., Tokunaga, T. Production of transgenic chimera\nrabbit fetuses using somatic cell nuclear transfer. Cloning Stem Cells,\n4(1): p. 9-19, 2002.\n[27] Mestas, J. and K. Ley, Monocyte-endothelial cell interactions in the\ndevelopment of atherosclerosis. Trends Cardiovasc Med, 18(6): p. 228-\n32, 2008.\n[28] Bobryshev, Y.V., Monocyte recruitment and foam cell formation in\natherosclerosis. Micron, 37(3): p. 208-22, 2006.\n[29] Lu, Z.Y., Jensen, L. E., Huang, Y., Kealey, C., Blair, I. A., Whitehead,\nA. S. The up-regulation of monocyte chemoattractant protein-1 (MCP-1)\nin Ea.hy 926 endothelial cells under long-term low folate stress is\nmediated by the p38 MAPK pathway. Atherosclerosis, 205(1): p. 48-54,\n2009.\n[30] Liang, J., Liu, E., Yu, Y., Kitajima, S., Koike, T., Jin, Y., Morimoto, M.,\nHatakeyama, K., Asada, Y., Watanabe, T., Sasaguri, Y., Watanabe, S.,\nFan, J. Macrophage metalloelastase accelerates the progression of\natherosclerosis in transgenic rabbits. Circulation, 113(16): p. 1993-2001,\n2006."]}