291 results on '"Hébrard G"'
Search Results
2. Consequences of spectrograph illumination for the accuracy of radial-velocimetry
- Author
-
Hébrard G., Lovis C., Pepe F., Perruchot S., Bouchy F., Chazelas B., and Boisse I.
- Subjects
Physics ,QC1-999 - Abstract
For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.
- Published
- 2011
- Full Text
- View/download PDF
3. Exoplanets search and characterization with the SOPHIE spectrograph at OHP
- Author
-
Hébrard G.
- Subjects
Physics ,QC1-999 - Abstract
Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.
- Published
- 2011
- Full Text
- View/download PDF
4. Three new massive companions in the planet-brown dwarf boundary detected with SOPHIE
- Author
-
Santerne A., Queloz D., Perrier C., Pepe F., Moutou C., Lovis C., Lagrange A.-M., Forveille T., Ehrenreich D., Eggenberger A., Desort M., Delfosse X., Bonfils X., Arnold L., Boisse I., Bouchy F., Díaz R.F., Hébrard G., Santos N. C., Ségransan D., Udry S., and Vidal-Madjar A.
- Subjects
Physics ,QC1-999 - Abstract
We report the detection of three new massive companions to mainsequence stars based on precise radial velocities obtained with the SOPHIE spectrograph, as part of an ongoing programme to search for extrasolar planets. The minimum masses of the detected companions range from around 16 Mjup to around 60 Mjup, and therefore lie at both sides of the boundary between massive extrasolar planets and brown dwarves.
- Published
- 2011
- Full Text
- View/download PDF
5. Disentangling stellar activity and planetary signals
- Author
-
Santos N.C., Hébrard G., Bonfils X., Boisse I., Bouchy F., and Vauclair S.
- Subjects
Physics ,QC1-999 - Abstract
Photospheric stellar activity (i.e. dark spots or bright plages) might be an important source of noise and confusion in the radial-velocity (RV) measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deep understanding and precise characterization of the effects of stellar activity, in order to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor.
- Published
- 2011
- Full Text
- View/download PDF
6. TOI-3568 b: A super-Neptune in the sub-Jovian desert.
- Author
-
Martioli, E., Petrucci, R. P., Jofré, E., Hébrard, G., Ghezzi, L., Gómez Maqueo Chew, Y., Díaz, R. F., Perottoni, H. D., Garcia, L. H., Rapetti, D., Lecavelier des Etangs, A., de Almeida, L., Arnold, L., Artigau, É., Basant, R., Bean, J. L., Bieryla, A., Boisse, I., Bonfils, X., and Brady, M.
- Subjects
PLANETARY systems ,PLANETARY mass ,HOT Jupiters ,GAS giants ,PLANETARY orbits ,ASTRONOMICAL photometry - Abstract
The sub-Jovian desert is a region in the mass-period and radius-period parameter space that typically encompasses short-period ranges between super-Earths and hot Jupiters, and exhibits an intrinsic dearth of planets. This scarcity is likely shaped by photoevaporation caused by the stellar irradiation received by giant planets that have migrated inward. We report the detection and characterization of TOI-3568 b, a transiting super-Neptune with a mass of 26.4 ± 1.0 M
⊕ , a radius of 5.30 ± 0.27 R⊕ , a bulk density of 0.98 ± 0.15 g cm−3 , and an orbital period of 4.417965 (5) d situated in the vicinity of the sub-Jovian desert. This planet orbiting a K dwarf star with solar metallicity was identified photometrically by the Transiting Exoplanet Survey Satellite (TESS). It was characterized as a planet by our high-precision radial-velocity (RV) monitoring program using MAROON-X at Gemini North, supplemented with additional observations from the SPICE large program with SPIRou at CFHT. We performed a Bayesian MCMC joint analysis of the TESS and ground-based photometry, and MAROON-X and SPIRou RVs, to measure the orbit, radius, and mass of the planet, as well as a detailed analysis of the high-resolution flux and polarimetric spectra to determine the physical parameters and elemental abundances of the host star. Our results reveal TOI-3568 b to be a hot super-Neptune rich in hydrogen and helium, with a core of heavier elements of between 10 and 25 M⊕ in mass. We analyzed the photoevaporation status of TOI-3568 b and find that it experiences one of the highest extreme-ultraviolet (EUV) luminosities among planets with a mass of Mp < 2 MNep , yet it has an evaporation lifetime exceeding 5 Gyr. Positioned in the transition between two significant populations of exoplanets on the mass-period and energy diagrams, this planet presents an opportunity to test theories concerning the origin of the sub-Jovian desert. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
7. SPIRou spectropolarimetry of the T Tauri star TW Hydrae: magnetic fields, accretion, and planets.
- Author
-
Donati, J -F, Cristofari, P I, Lehmann, L T, Moutou, C, Alencar, S H P, Bouvier, J, Arnold, L, Delfosse, X, Artigau, E, Cook, N, Kóspál, Á, Ménard, F, Baruteau, C, Takami, M, Cabrit, S, Hébrard, G, Doyon, R, and Team, SPIRou Science
- Subjects
STELLAR magnetic fields ,STARS ,MAGNETIC fields ,HYDRA (Marine life) ,PLANETS ,ACCRETION disks - Abstract
In this paper, we report near-infrared observations of the classical T Tauri star TW Hya with the SPIRou high-resolution spectropolarimeter and velocimeter at the 3.6-m Canada–France–Hawaii Telescope in 2019, 2020, 2021, and 2022. By applying Least-Squares Deconvolution (LSD) to our circularly polarized spectra, we derived longitudinal fields that vary from year to year from –200 to +100 G, and exhibit low-level modulation on the 3.6 d rotation period of TW Hya, despite the star being viewed almost pole-on. We then used Zeeman–Doppler Imaging to invert our sets of unpolarized and circularly polarized LSD profiles into brightness and magnetic maps of TW Hya in all four seasons, and obtain that the large-scale field of this T Tauri star mainly consists of a 1.0–1.2 kG dipole tilted at about 20° to the rotation axis, whereas the small-scale field reaches strengths of up to 3–4 kG. We find that the large-scale field is strong enough to allow TW Hya to accrete material from the disc on the polar regions at the stellar surface in a more or less geometrically stable accretion pattern, but not to succeed in spinning down the star. We also report the discovery of a radial velocity signal of semi-amplitude |$11.1^{+3.3}_{-2.6}$| m s
−1 (detected at 4.3σ) at a period of 8.3 d in the spectrum of TW Hya, whose origin may be attributed to either a non-axisymmetric density structure in the inner accretion disc, or to a |$0.55^{+0.17}_{-0.13}$| MꝜ candidate close-in planet (if orbiting in the disc plane), at an orbital distance of 0.075 ± 0.001 au. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
8. New approaches to adapt escape game activities to large audience in chemical engineering: Numeric supports and students’ participation
- Author
-
Monnot, M., Laborie, S., Hébrard, G., and Dietrich, N.
- Published
- 2020
- Full Text
- View/download PDF
9. The classical T Tauri star CI Tau observed with SPIRou: magnetospheric accretion and planetary formation.
- Author
-
Donati, J -F, Finociety, B, Cristofari, P I, Alencar, S H P, Moutou, C, Delfosse, X, Fouqué, P, Arnold, L, Baruteau, C, Kóspál, Á, Ménard, F, Carmona, A, Grankin, K, Takami, M, Artigau, E, Doyon, R, Hébrard, G, and team, the SPIRou science
- Subjects
ORIGIN of planets ,ACCRETION disks ,ACCRETION (Astrophysics) ,STELLAR magnetic fields - Abstract
We report new observations of the classical T Tauri star CI Tau with the SPIRou near-infrared spectropolarimeter and velocimeter at the Canada–France–Hawaii Telescope (CFHT) in late 2019, 2020, and 2022, complemented with observations obtained with the ESPaDOnS optical spectropolarimeter at CFHT in late 2020. From our SPIRou and ESPaDOnS spectra, to which we applied least-squares deconvolution, we infer longitudinal fields clearly modulated with the 9-d rotation period of CI Tau. Using Zeeman–Doppler imaging, we reconstruct the large-scale magnetic topology, first from SPIRou data only in all three seasons, then from our 2020 SPIRou and ESPaDOnS data simultaneously. We find that CI Tau hosts a mainly axisymmetric poloidal field, with a 1 kG dipole slightly tilted to the rotation axis and dark spots close to the pole that coincide with the footpoints of accretion funnels linking the star to the inner disc. Our results also suggest that CI Tau accretes mass from the disc in a stable fashion. We further find that radial velocities (RVs) derived from atomic and CO lines in SPIRou spectra are both rotationally modulated, but with a much lower amplitude than that expected from the putative candidate planet CI Tau b. We confirm the presence of a RV signal at a period of 23.86 d reported in a separate analysis, but detect it clearly in CO lines only and not in atomic lines, suggesting that it likely traces a non-axisymmetric structure in the inner disc of CI Tau rather than a massive close-in planet. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
10. Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: Experiments and modeling
- Author
-
Hariz, R., del Rio Sanz, J.I., Mercier, C., Valentin, R., Dietrich, N., Mouloungui, Z., and Hébrard, G.
- Published
- 2017
- Full Text
- View/download PDF
11. A hot mini-Neptune and a temperate, highly eccentric sub-Saturn around the bright K-dwarf TOI-2134.
- Author
-
Rescigno, F, Hébrard, G, Vanderburg, A, Mann, A W, Mortier, A, Morrell, S, Buchhave, L A, Collins, K A, Mann, C R, Hellier, C, Haywood, R D, West, R, Stalport, M, Heidari, N, Anderson, D, Huang, C X, López-Morales, M, Cortés-Zuleta, P, Lewis, H M, and Dumusque, X
- Subjects
- *
OUTER planets , *INNER planets , *KRIGING , *INFRARED cameras , *ORBITS (Astronomy) , *SATURN (Planet) - Abstract
We present the characterization of an inner mini-Neptune in a 9.2292005 ± 0.0000063 d orbit and an outer mono-transiting sub-Saturn planet in a 95.50 |$^{+0.36}_{-0.25}$| d orbit around the moderately active, bright (mv = 8.9 mag) K5V star TOI-2134. Based on our analysis of five sectors of TESS data, we determine the radii of TOI-2134b and c to be 2.69 ± 0.16 R⊕ for the inner planet and 7.27 ± 0.42 R⊕ for the outer one. We acquired 111 radial-velocity (RV) spectra with HARPS-N and 108 RV spectra with SOPHIE. After careful periodogram analysis, we derive masses for both planets via Gaussian Process regression: 9.13 |$^{+0.78}_{-0.76}$| M⊕ for TOI-2134b and 41.89 |$^{+7.69}_{-7.83}$| M⊕ for TOI-2134c. We analysed the photometric and RV data first separately, then jointly. The inner planet is a mini-Neptune with density consistent with either a water-world or a rocky core planet with a low-mass H/He envelope. The outer planet has a bulk density similar to Saturn's. The outer planet is derived to have a significant eccentricity of 0.67 |$^{+0.05}_{-0.06}$| from a combination of photometry and RVs. We compute the irradiation of TOI-2134c as 1.45 ± 0.10 times the bolometric flux received by Earth, positioning it for part of its orbit in the habitable zone of its system. We recommend further RV observations to fully constrain the orbit of TOI-2134c. With an expected Rossiter–McLaughlin (RM) effect amplitude of 7.2 ± 1.3 |$\rm m\, s^{-1}$| , we recommend TOI-2134c for follow-up RM analysis to study the spin–orbit architecture of the system. We calculate the Transmission Spectroscopy Metric, and both planets are suitable for bright-mode Near Infrared Camera (NIRCam) atmospheric characterization. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
12. Homogeneous search for helium in the atmosphere of 11 gas giant exoplanets with SPIRou
- Author
-
Allart, R., Lemée-Joliecoeur, P. -B., Jaziri, A. Y., Lafrenière, D., Artigau, E., Cook, N., Darveau-Bernier, A., Dang, L., Cadieux, C., Boucher, A., Bourrier, V., Deibert, E. K., Pelletier, S., Radica, M., Benneke, B., Carmona, A., Cloutier, R., Cowan, N. B., Delfosse, X., Donati, J. -F., Doyon, R., Figueira, P., Forveille, T., Fouqué, P., Gaidos, E., Gu, P. -G., Hébrard, G., Kiefer, F., Kóspál, Á, Jayawardhana, R., Martioli, E., Santos, L. A. Dos, Turner, H. Shang J. D., and Vidotto, A.
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,FOS: Physical sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The metastable helium triplet in the near-infrared (10833{\AA}) is among the most important probes of exoplanet atmospheres. It can trace their extended outer layers and constrain mass-loss. We use the near-infrared high-resolution spectropolarimeter SPIRou on the CFHT to search for the spectrally resolved helium triplet in the atmospheres of eleven exoplanets, ranging from warm mini-Neptunes to hot Jupiters and orbiting G, K, and M dwarfs. Observations were obtained as part of the SPIRou Legacy Survey and complementary open-time programs. We apply a homogeneous data reduction to all datasets and set constraints on the presence of metastable helium, despite the presence of systematics in the data. We confirm published detections for HAT-P-11b, HD189733b, and WASP-69b and set upper limits for the other planets. We apply the p-winds open source code to set upper limits on the mass-loss rate for the non-detections and to constrain the thermosphere temperature, mass-loss rate, line-of-sight velocity, and the altitude of the thermosphere for the detections. We confirm that the presence of metastable helium correlates with the stellar mass and the XUV flux received by the planets. We investigated the correlation between the mass-loss rate and the presence of metastable helium, but it remains difficult to draw definitive conclusions. Finally, some of our results are in contradiction with previous results in the literature, therefore we stress the importance of repeatable, homogeneous, and larger-scale analyses of the helium triplet to obtain robust statistics, study temporal variability, and better understand how the helium triplet can be used to explore the evolution of exoplanets., Comment: 28 pages, 13 figures, Accepted in A&A for publication
- Published
- 2023
13. Far beyond the Sun: II. Probing the stellar magnetism of the young Sun {\iota} Horologii from the photosphere to its corona
- Author
-
Amazo-Gómez, E. M., Alvarado-Gómez, J. D., Poppenhaeger, K., Hussain, G. A. J., Wood, B. E., Drake, J. J., Nascimento Jr., J. -D. do, Anthony, F., Sanz-Forcada, J., Stelzer, B., Donati, J. F., Del Sordo, F., Damasso, M., Redfield, S., König, P. C., Hébrard, G., and Miles-Páez, P. A.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
A comprehensive multi-wavelength campaign has been carried out to probe stellar activity and variability in the young Sun-like star $\iota$-Horologii. We present the results from long-term spectropolarimetric monitoring of the system by using the ultra-stable spectropolarimeter/velocimeter HARPS at the ESO 3.6-m telescope. Additionally, we included high-precision photometry from the NASA Transiting Exoplanet Survey Satellite (TESS) and observations in the far- and near-ultraviolet spectral regions using the STIS instrument on the NASA/ESA Hubble Space Telescope (HST). The high-quality dataset allows a robust characterisation of the star's rotation period, as well as a probe of the variability using a range of spectroscopic and photometric activity proxies. By analyzing the gradient of the power spectra (GPS) of the TESS lightcurves we constrained the faculae-to-spot driver ratio ($\rm S_{fac}/S_{spot}$) to 0.510$\pm$0.023, which indicates that the stellar surface is spot dominated during the time of the observations. We compared the photospheric activity properties derived from the GPS method with a magnetic field map of the star derived using Zeeman-Doppler imaging (ZDI) from simultaneous spectropolarimetric data for the first time. Different stellar activity proxies enable a more complete interpretation of the observed variability. For example, we observed enhanced emission in the HST transition line diagnostics C IV and C III, suggesting a flaring event. From the analysis of TESS data acquired simultaneously with the HST data, we investigate the photometric variability at the precise moment that the emission increased and derive correlations between different observables, probing the star from its photosphere to its corona.
- Published
- 2023
14. The HARPS search for southern extra-solar planets. XLVII. Five Jupiter-mass planets in long-period orbits, one highly irradiated Neptune, one brown dwarf, and five stellar binaries
- Author
-
Frensch, Y. G. C., Curto, G. Lo, Bouchy, F., Mayor, M., Hébrard, G., Lovis, C., Moutou, C., Pepe, F. A., Queloz, D., Santos, N., Segransan, D., Udry, S., and Unger, N.
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Our aim is to detect and characterise long-period companions around main sequence stars (spectral types late F to early M). We use the RV method to search for exoplanets around stars. The RV variations are measured with HARPS at the ESO 3.6 metre telescope. The true mass and inclination of our heavier companions are provided by astrometry, for which we use proper motions from Hipparcos and Gaia. Five Jupiter-mass exoplanets are reported to orbit HIP54597, BD-210397 (x2), HD74698, and HD94771 with 8.9 yr, 5.2 yr, 17.4 yr, 9.4 yr, and 5.9 yr orbits, and to have minimum masses of $2.01 \pm 0.03$, $0.7 \pm 0.1$, $2.4^{+1.5}_{-0.2}$, $0.40 \pm 0.06$, and $0.53 \pm 0.03 M_J$ respectively. HD74698 also hosts a highly irradiated Neptune in a 15 day orbit with a minimum mass of $0.07 \pm 0.01 M_J$. The mass of HIP54597 b can maximally increase by 10% - 30%, the minimum mass of HD74698 c is likely equal to its true mass, and BD-210397 c has a mass of $2.66^{+0.63}_{-0.32} M_J$. HD62364 hosts a brown dwarf with a true mass of $18.77^{+0.66}_{-0.63} M_J$ in an orbit of 14 yr. HD56380B, HD221638B, and HD33473C have minimum masses within the brown dwarf limits, in orbits of 8.9 yr, 16.6 yr, and 50 yr respectively; however, astrometric measurements reveal them to be stellar binaries, with masses of $375.3^{+8.6}_{-8.4}$, $110.0^{+3.9}_{-3.7}$, and $271.0^{+3.9}_{-3.8} M_J$. The orbits of the stellar binaries HD11938 and HD61383 are incomplete. The preliminary result for HD61383 is a 0.190 $M_{\odot}$ binary in a 39 yr orbit. The secondary of the binary system HD11938 has a mass of 0.33 $M_{\odot}$ - which is confirmed by a secondary peak in the CCF - and a preliminary period of 35 yr. The origin of the 3.0 yr RV signal of HD3964 is uncertain as it shows entanglement with the magnetic cycle of the star. We finally report one more star, HD11608, with a magnetic cycle that mimics a planetary signal., 22 pages, 32 figures, accepted for publication in A&A
- Published
- 2023
15. An Earth-sized exoplanet with a Mercury-like composition
- Author
-
Santerne, A., Brugger, B., Armstrong, D. J., Adibekyan, V., Lillo-Box, J., Gosselin, H., Aguichine, A., Almenara, J.-M., Barrado, D., Barros, S. C. C., Bayliss, D., Boisse, I., Bonomo, A. S., Bouchy, F., Brown, D. J. A., Deleuil, M., Delgado Mena, E., Demangeon, O., Díaz, R. F., Doyle, A., Dumusque, X., Faedi, F., Faria, J. P., Figueira, P., Foxell, E., Giles, H., Hébrard, G., Hojjatpanah, S., Hobson, M., Jackman, J., King, G., Kirk, J., Lam, K. W. F., Ligi, R., Lovis, C., Louden, T., McCormac, J., Mousis, O., Neal, J. J., Osborn, H. P., Pepe, F., Pollacco, D., Santos, N. C., Sousa, S. G., Udry, S., and Vigan, A.
- Published
- 2018
- Full Text
- View/download PDF
16. The magnetic field and multiple planets of the young dwarf AU~Mic
- Author
-
Donati, J. -F., Cristofari, P. I., Finociety, B., Klein, B., Moutou, C., Gaidos, E., Cadieux, C., Artigau, E., Correia, A. C. M., Boué, G., Cook, N. J., Carmona, A., Lehmann, L. T., Bouvier, J., Martioli, E., Morin, J., Fouqué, P., Delfosse, X., Royon, R., Hébrard, G., Alencar, S. H. P., Laskar, J., Arnold, L., Petit, P., Kospal, A., Vidotto, A., Folsom, C. P., and collaboration, the SLS
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
In this paper we present an analysis of near-infrared spectropolarimetric and velocimetric data of the young M dwarf AU Mic, collected with SPIRou at the Canada-France-Hawaii telescope from 2019 to 2022, mostly within the SPIRou Legacy Survey. With these data, we study the large- and small-scale magnetic field of AU Mic, detected through the unpolarized and circularly-polarized Zeeman signatures of spectral lines. We find that both are modulated with the stellar rotation period (4.86 d), and evolve on a timescale of months under differential rotation and intrinsic variability. The small-scale field, estimated from the broadening of spectral lines, reaches $2.61\pm0.05$ kG. The large-scale field, inferred with Zeeman-Doppler imaging from Least-Squares Deconvolved profiles of circularly-polarized and unpolarized spectral lines, is mostly poloidal and axisymmetric, with an average intensity of $550\pm30$ G. We also find that surface differential rotation, as derived from the large-scale field, is $\simeq$30% weaker than that of the Sun. We detect the radial velocity (RV) signatures of transiting planets b and c, although dwarfed by activity, and put an upper limit on that of candidate planet d, putatively causing the transit-timing variations of b and c. We also report the detection of the RV signature of a new candidate planet (e) orbiting further out with a period of $33.39\pm0.10$ d, i.e., near the 4:1 resonance with b. The RV signature of e is detected at 6.5$\sigma$ while those of b and c show up at $\simeq$4$\sigma$, yielding masses of $10.2^{+3.9}_{-2.7}$ and $14.2^{+4.8}_{-3.5}$ Earth masses for b and c, and a minimum mass of $35.2^{+6.7}_{-5.4}$ Earth masses for e., Comment: MNRAS, in press (20 pages and 12 figures + 9 pages of supplementary material)
- Published
- 2023
17. WASP-135b : A Highly Irradiated, Inflated Hot Jupiter Orbiting a G5V Star
- Author
-
Spake, J. J., Brown, D. J. A., Doyle, A. P., Hébrard, G., McCormac, J., Armstrong, D. J., Pollacco, D., Chew, Y. Gómez Maqueo, Anderson, D. R., Barros, S. C. C., Bouchy, F., Boumis, P., Bruno, G., Cameron, A. Collier, Courcol, B., Davies, G. R., Faedi, F., Hellier, C., Kirk, J., Lam, K. W. F., Liakos, A., Louden, T., Maxted, P. F. L., Osborn, H. P., Palle, E., Arranz, J. Prieto, Udry, S., Walker, S. R., West, R. G., and Wheatley, P. J.
- Published
- 2016
18. Physical absorption of volatile organic compounds by spraying emulsion in a spray tower: Experiments and modelling
- Author
-
Tatin, R., Moura, L., Dietrich, N., Baig, S., and Hébrard, G.
- Published
- 2015
- Full Text
- View/download PDF
19. Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148.
- Author
-
Moutou, C., Delfosse, X., Petit, A. C., Donati, J.-F., Artigau, E., Fouqué, P., Carmona, A., Ould-Elhkim, M., Arnold, L., Cook, N. J., Cadieux, C., Bellotti, S., Boisse, I., Bouchy, F., Charpentier, P., Cortés-Zuleta, P., Doyon, R., Hébrard, G., Martioli, E., and Morin, J.
- Subjects
INNER planets ,STELLAR magnetic fields ,PLANETARY systems ,EXTRASOLAR planets - Abstract
SPIRou is a near-infrared spectropolarimeter and a high-precision velocimeter. The SPIRou Legacy Survey collected data from February 2019 to June 2022, half of the time devoted to a blind search for exoplanets around nearby cool stars. The aim of this paper is to present this program and an overview of its properties, and to revisit the radial velocity (RV) data of two multiplanet systems, including new visits with SPIRou. From SPIRou data, we can extract precise RVs using efficient telluric correction and line-by-line measurement techniques, and we can reconstruct stellar magnetic fields from the collection of polarized spectra using the Zeeman-Doppler imaging method. The stellar sample of our blind search in the solar neighborhood, the observing strategy, the RV noise estimates, chromatic behavior, and current limitations of SPIRou RV measurements on bright M dwarfs are described. In addition, SPIRou data over a 2.5-yr time span allow us to revisit the known multiplanet systems GJ 876 and GJ 1148. For GJ 876, the new dynamical analysis including the four planets is consistent with previous models and confirms that this system is deep in the Laplace resonance and likely chaotic. The large-scale magnetic map of GJ 876 over two consecutive observing seasons is obtained and shows a dominant dipolar field with a polar strength of 30 G, which defines the magnetic environment in which the inner planet with a period of 1.94 days is embedded. For GJ 1148, we refine the known two-planet model. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
20. Magnetic fields and rotation periods of M dwarfs from SPIRou spectra.
- Author
-
Donati, J-F, Lehmann, L T, Cristofari, P I, Fouqué, P, Moutou, C, Charpentier, P, Ould-Elhkim, M, Carmona, A, Delfosse, X, Artigau, E, Alencar, S H P, Cadieux, C, Arnold, L, Petit, P, Morin, J, Forveille, T, Cloutier, R, Doyon, R, Hébrard, G, and SLS, the Collaboration
- Subjects
MAGNETIC fields ,KRIGING ,ROSSBY number ,ROTATIONAL motion ,STELLAR rotation ,DWARF stars - Abstract
We present near-infrared spectropolarimetric observations of a sample of 43 weakly to moderately active M dwarfs, carried with SPIRou at the Canada–France–Hawaii Telescope in the framework of the SPIRou Legacy Survey from early 2019 to mid-2022. We use the 6700 circularly polarised spectra collected for this sample to investigate the longitudinal magnetic field and its temporal variations for all sample stars, from which we diagnose, through quasi-periodic Gaussian process regression, the periodic modulation and longer-term fluctuations of the longitudinal field. We detect the large-scale field for 40 of our 43 sample stars, and infer a reliable or tentative rotation period for 38 of them, using a Bayesian framework to diagnose the confidence level at which each rotation period is detected. We find rotation periods ranging from 14 to over 60 d for the early-M dwarfs, and from 70 to 200 d for most mid- and late-M dwarfs (potentially up to 430 d for one of them). We also find that the strength of the detected large-scale fields does not decrease with increasing period or Rossby number for the slowly rotating dwarfs of our sample as it does for higher-mass, more active stars, suggesting that these magnetic fields may be generated through a different dynamo regime than those of more rapidly rotating stars. We also show that the large-scale fields of most sample stars evolve on long time-scales, with some of them globally switching sign as stars progress on their putative magnetic cycles. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
21. The magnetic field and multiple planets of the young dwarf AU Mic.
- Author
-
Donati, J-F, Cristofari, P I, Finociety, B, Klein, B, Moutou, C, Gaidos, E, Cadieux, C, Artigau, E, Correia, A C M, Boué, G, Cook, N J, Carmona, A, Lehmann, L T, Bouvier, J, Martioli, E, Morin, J, Fouqué, P, Delfosse, X, Doyon, R, and Hébrard, G
- Subjects
STELLAR activity ,DWARF planets ,MAGNETIC fields ,STELLAR rotation ,SPECTRAL line broadening ,SPECTRAL lines ,DWARF stars - Abstract
In this paper, we present an analysis of near-infrared spectropolarimetric and velocimetric data of the young M dwarf AU Mic, collected with SPIRou at the Canada–France–Hawaii telescope from 2019 to 2022, mostly within the SPIRou Legacy Survey. With these data, we study the large- and small-scale magnetic field of AU Mic, detected through the unpolarized and circularly polarized Zeeman signatures of spectral lines. We find that both are modulated with the stellar rotation period (4.86 d), and evolve on a time-scale of months under differential rotation and intrinsic variability. The small-scale field, estimated from the broadening of spectral lines, reaches 2.61 ± 0.05 kG. The large-scale field, inferred with Zeeman–Doppler imaging from Least-Squares Deconvolved profiles of circularly polarized and unpolarized spectral lines, is mostly poloidal and axisymmetric, with an average intensity of 550 ± 30 G. We also find that surface differential rotation, as derived from the large-scale field, is ≃30 per cent weaker than that of the Sun. We detect the radial velocity (RV) signatures of transiting planets b and c, although dwarfed by activity, and put an upper limit on that of candidate planet d, putatively causing the transit-timing variations of b and c. We also report the detection of the RV signature of a new candidate planet (e) orbiting further out with a period of 33.39 ± 0.10 d, i.e. near the 4:1 resonance with b. The RV signature of e is detected at 6.5σ while those of b and c show up at ≃4σ, yielding masses of |$10.2^{+3.9}_{-2.7}$| and |$14.2^{+4.8}_{-3.5}$| M
⊕ for b and c, and a minimum mass of |$35.2^{+6.7}_{-5.4}$| M⊕ for e. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
22. Far beyond the Sun − II. Probing the stellar magnetism of the young Sun ι Horologii from the photosphere to its corona.
- Author
-
Amazo-Gómez, E M, Alvarado-Gómez, J D, Poppenhäger, K, Hussain, G A J, Wood, B E, Drake, J J, do Nascimento, J-D, Anthony, F, Sanz-Forcada, J, Stelzer, B, Del Sordo, F, Damasso, M, Redfield, S, Donati, J F, König, P C, Hébrard, G, and Miles-Páez, P A
- Subjects
STELLAR activity ,STELLAR rotation ,STELLAR magnetic fields ,SPACE telescopes ,LIGHT curves ,SOLAR flares ,SOLAR atmosphere ,POWER spectra - Abstract
A comprehensive multiwavelength campaign has been carried out to probe stellar activity and variability in the young Sun-like star ι-Horologii. We present the results from long-term spectropolarimetric monitoring of the system by using the ultra-stable spectropolarimeter/velocimeter HARPS at the ESO 3.6-m telescope. Additionally, we included high-precision photometry from the NASA Transiting Exoplanet Survey Satellite (TESS) and observations in the far- and near-ultraviolet spectral regions using the STIS instrument on the NASA/ESA Hubble Space Telescope (HST). The high-quality data set allows a robust characterization of the star's rotation period, as well as a probe of the variability using a range of spectroscopic and photometric activity proxies. By analysing the gradient of the power spectra (GPS) in the TESS light curves, we constrained the faculae-to-spot driver ratio (|$\rm S_{fac}/S_{spot}$|) to 0.510 ± 0.023, which indicates that the stellar surface is spot dominated during the time of the observations. We compared the photospheric activity properties derived from the GPS method with a magnetic field map of the star derived using Zeeman–Doppler imaging (ZDI) from simultaneous spectropolarimetric data for the first time. Different stellar activity proxies enable a more complete interpretation of the observed variability. For example, we observed enhanced emission in the HST transition line diagnostics C iv and C iii , suggesting a flaring event. From the analysis of TESS data acquired simultaneously with the HST data, we investigate the photometric variability at the precise moment that the emission increased and derive correlations between different observables, probing the star from its photosphere to its corona. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
23. Near-IR and optical radial velocities of the active M-dwarf star Gl 388 (AD Leo) with SPIRou at CFHT and SOPHIE at OHP
- Author
-
Carmona, A, Delfosse, X, Bellotti, S, Cortés-Zuleta, P, Ould-Elhkim, M, Heidari, N, Mignon, L, Donati, J.F, Moutou, C, Cook, N, Artigau, E, Fouqué, P, Martioli, E, Cadieux, C, Morin, J, Forveille, T, Boisse, I, Hébrard, G, Díaz, R.F, Lafrenière, D, Kiefer, F, Petit, P, Doyon, R, Acuña, L, Arnold, L, Bonfils, X, Bouchy, F, Bourrier, V, Dalal, S, Deleuil, M, Demangeon, O, Dumusque, X, Hara, N, Hoyer, S, Mousis, O, Santerne, A, Ségrasan, D, Stalport, M, Udry, S, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; Context: The search for extrasolar planets around the nearest M-dwarfs is a crucial step towards identifying the nearest Earth-like planets. One of the main challenges in this search is that M-dwarfs can be magnetically active and stellar activity can produce radial velocity (RV) signals that could mimic those of a planet. Aims: We aim to investigate whether the 2.2 day period observed in optical RVs of the nearby active M-dwarf star Gl 388 (AD Leo) is due to stellar activity or to a planet which co-rotates with the star as suggested in the past. Methods: We obtained quasi-simultaneous optical RVs of Gl 388 from 2019 to 2021 with SOPHIE (R$\sim$75k) at the OHP in France, and near-IR RV and Stokes V measurements with SPIRou at the CFHT (R$\sim$70k). Results: The SOPHIE RV time-series displays a periodic signal with 2.23$\pm$0.01 days period and 23.6$\pm$0.5 m/s amplitude, which is consistent with previous HARPS observations obtained in 2005-2006. The SPIRou RV time-series is flat at 5 m/s rms and displays no periodic signals. RV signals of amplitude higher than 5.3 m/s at a period of 2.23 days can be excluded with a confidence level higher than 99%. Using the modulation of the longitudinal magnetic field (Bl) measured with SPIRou, we derive a stellar rotation period of 2.2305$\pm$0.0016 days. Conclusions: SPIRou RV measurements provide solid evidence that the periodic variability of the optical RVs of Gl 388 is due to stellar activity rather than to a co-rotating planet. The magnetic activity nature of the optical RV signal is further confirmed by the modulation of Bl with the same period. The SPIRou campaign on Gl 388 demonstrates the power of near-IR RV to confirm or infirm planet candidates discovered in the optical around active stars. SPIRou observations reiterate how effective spectropolarimetry is at determining the stellar rotation period.
- Published
- 2023
24. Estimating the atmospheric properties of 44 M dwarfs from SPIRou spectra
- Author
-
Cristofari, P, Donati, J-F, Masseron, T, Fouqué, P, Moutou, C, Carmona, A, Artigau, E, Martioli, E, Hébrard, G, Gaidos, E, Delfosse, X, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We describe advances on a method designed to derive accurate parameters of M dwarfs. Our analysis consists in comparing high-resolution infrared spectra acquired with the near-infrared spectro-polarimeter SPIRou to synthetic spectra computed from MARCS model atmospheres, in order to derive the effective temperature ($T_{\rm eff}$), surface gravity ($\rm \log{g}$), metallicity ([M/H]) and alpha-enhancement ($\rm [\alpha/Fe]$) of 44 M dwarfs monitored within the SPIRou Legacy Survey (SLS). Relying on 12 of these stars, we calibrated our method by refining our selection of well modelled stellar lines, and adjusted the line list parameters to improve the fit when necessary. Our retrieved $T_{\rm eff}$, $\rm \log{g}$ and [M/H] are in good agreement with literature values, with dispersions of the order of 50 K in $T_{\rm eff}$ and 0.1 dex in $\rm \log{g}$ and [M/H]. We report that fitting $\rm [\alpha/Fe]$ has an impact on the derivation of the other stellar parameters, motivating us to extend our fitting procedure to this additional parameter. We find that our retrieved $\rm [\alpha/Fe]$ are compatible with those expected from empirical relations derived in other studies., Comment: 13 pages, 9 figures + appendix and supplementary material; accepted for publication in MNRAS
- Published
- 2022
25. Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops.
- Author
-
Osborn, H P, Nowak, G, Hébrard, G, Masseron, T, Lillo-Box, J, Pallé, E, Bekkelien, A, Florén, H-G, Guterman, P, Simon, A E, Adibekyan, V, Bieryla, A, Borsato, L, Brandeker, A, Ciardi, D R, Collier Cameron, A, Collins, K A, Egger, J A, Gandolfi, D, and Hooton, M J
- Subjects
TIME series analysis ,NATURAL satellites ,RESTAURANTS ,ORBITS (Astronomy) ,PLANETS ,PHOTOMETRY - Abstract
HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R
⊕ (HIP 9618 b) and 3.343 ± 0.039 R⊕ (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N , SOPHIE , and CAFE revealed a mass of 10.0 ± 3.1M⊕ for HIP 9618 b, which, according to our interior structure models, corresponds to a |$6.8\pm 1.4~{{\ \rm per\ cent}}$| gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M⊕ . Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion (|$0.08^{+0.12}_{-0.05} M_\odot$|) orbiting at |$26.0^{+19.0}_{-11.0}$| au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
26. Photodynamical analysis of the nearly resonant planetary system WASP-148
- Author
-
Almenara, J. M., Hébrard, G., Díaz, R. F., Laskar, J., Correia, A. C. M., Anderson, D. R., Boisse, I., Bonfils, X., Brown, D. J. A., Casanova, V., Cameron, A. Collier, Fernández, M., Jenkins, J. M., Kiefer, F., des Étangs, A. Lecavelier, Lissauer, J. J., Maciejewski, G., McCormac, J., Osborn, H., Pollacco, D., Ricker, G., Sánchez, J., Seager, S., Udry, S., Verilhac, D., Winn, J., University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
MCC ,Planetary systems ,QC Physics ,radial velocities [Techniques] ,individual: WASP-148 [Stars] ,photometric [Techniques] ,QB Astronomy ,3rd-DAS ,QC ,QB - Abstract
Funding for the TESS mission is provided by the NASA Explorer Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. A.C. acknowledges support by CFisUC projects (UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (PTDC/FIS-AST/7002/2020), ENGAGE SKA (POCI-01-0145-FEDER-022217), and PHO-BOS (POCI-01-0145-FEDER-029932), funded by COMPETE 2020 and FCT, Portugal. G.M. acknowledges the financial support from the National Science Centre, Poland through grant no. 2016/23/B/ST9/00579. MF acknowledges financial support from grant PID2019-109522GB-C5X/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation (MICINN). M.F., V.C. and J.S. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). J.M.A. and X.B. acknowledge funding from the European Research Council under the ERC Grant Agreement n. 337591-ExTrA. WASP-148 is a recently announced extra-solar system harbouring at least two giant planets. The inner planet transits its host star. The planets travel on eccentric orbits and are near the 4:1 mean-motion resonance, which implies significant mutual gravitational interactions. In particular, this causes transit-timing variations of a few minutes, which were detected based on ground-based photometry. This made WASP-148 one of the few cases where such a phenomenon was detected without space-based photometry. Here, we present a self-consistent model of WASP-148 that takes into account the gravitational interactions between all known bodies in the system. Our analysis simultaneously fits the available radial velocities and transit light curves. In particular, we used the photometry secured by the Transiting Exoplanet Survey Satellite (TESS) and made public after the WASP-148 discovery announcement. The TESS data confirm the transit-timing variations, but only in combination with previously measured transit times. The system parameters we derived agree with those previously reported and have a significantly improved precision, including the mass of the non-transiting planet. We found a significant mutual inclination between the orbital planes of the two planets: I = 41.0+6.2°-7.6 based on the modelling of the observations, although we found I = 20.8 ± 4.6° when we imposed a constraint on the model enforcing long-term dynamical stability. When a third planet was added to the model – based on a candidate signal in the radial velocity – the mutual inclination between planets b and c changed significantly allowing solutions closer to coplanar. We conclude that more data are needed to establish the true architecture of the system. If the significant mutual inclination is confirmed, WASP-148 would become one of the only few candidate non-coplanar planetary systems. We discuss possible origins for this misalignment. Publisher PDF
- Published
- 2022
27. Multi-scale analysis of the influence of physicochemical parameters on the hydrodynamic and gas–liquid mass transfer in gas/liquid/solid reactors
- Author
-
Kherbeche, A., Milnes, J., Jimenez, M., Dietrich, N., Hébrard, G., and Lekhlif, B.
- Published
- 2013
- Full Text
- View/download PDF
28. A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel
- Author
-
Dietrich, N., Loubière, K., Jimenez, M., Hébrard, G., and Gourdon, C.
- Published
- 2013
- Full Text
- View/download PDF
29. Mass transfer in the wake of non-spherical air bubbles quantified by quenching of fluorescence
- Author
-
Jimenez, M., Dietrich, N., and Hébrard, G.
- Published
- 2013
- Full Text
- View/download PDF
30. Experimental and CPFD study of axial and radial liquid mixing in water-fluidized beds of two solids exhibiting layer inversion
- Author
-
Vivacqua, V., Vashisth, S., Prams, A., Hébrard, G., Epstein, N., and Grace, J.R.
- Published
- 2013
- Full Text
- View/download PDF
31. Hint of an exocomet transit in the CHEOPS light curve of HD 172555.
- Author
-
Kiefer, F., Van Grootel, V., Lecavelier des Etangs, A., Szabó, Gy. M., Brandeker, A., Broeg, C., Collier Cameron, A., Deline, A., Olofsson, G., Wilson, T. G., Sousa, S. G., Gandolfi, D., Hébrard, G., Alibert, Y., Alonso, R., Anglada, G., Bárczy, T., Barrado, D., Barros, S. C. C., and Baumjohann, W.
- Subjects
LIGHT curves ,SOLAR system ,PULSATING stars ,STELLAR parallax ,COMETS ,SPACE telescopes ,PLANETESIMALS - Abstract
HD 172555 is a young (~20 Myr) A7V star surrounded by a 10 au wide debris disk suspected to be replenished partly by collisions between large planetesimals. Small evaporating transiting bodies, that is exocomets, have also been detected in this system by spectroscopy. After β Pictoris, this is another example of a system possibly witnessing a phase of the heavy bombardment of planetesimals. In such a system, small bodies trace dynamical evolution processes. We aim to constrain their dust content by using transit photometry. We performed a 2-day-long photometric monitoring of HD 172555 with the CHEOPS space telescope in order to detect shallow transits of exocomets with a typical expected duration of a few hours. The large oscillations in the light curve indicate that HD 172555 is a δ Scuti pulsating star. After removing those dominating oscillations, we found a hint of a transient absorption. If fitted with an exocomet transit model, it would correspond to an evaporating body passing near the star at a distance of 6.8±1.4R
★ (or 0.05±0.01 au) with a radius of 2.5 km. These properties are comparable to those of the exocomets already found in this system using spectroscopy, as well as those found in the β Pic system. The nuclei of the Solar System's Jupiter family comets, with radii of 2-6 km, are also comparable in size. This is the first piece of evidence of an exocomet photometric transit detection in the young system of HD 172555. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
32. Characterization of fluidized bed layer inversion in a 191-mm-diameter column using both experimental and CPFD approaches
- Author
-
Vivacqua, V., Vashisth, S., Hébrard, G., Grace, J.R., and Epstein, N.
- Published
- 2012
- Full Text
- View/download PDF
33. The SOPHIE search for northern extrasolar planets
- Author
-
Demangeon, O. D. S., Dalal, S., Hébrard, G., Nsamba, B., Kiefer, F., Camacho, J. D., Sahlmann, J., Arnold, L., Astudillo-Defru, N., Bonfils, X., Boisse, I., Bouchy, F., Bourrier, V., Campante, T., Delfosse, X., Deleuil, M., Díaz, R. F., Faria, J., Forveille, T., Hara, N., Heidari, N., Hobson, M. J., Lopez, T., Moutou, C., Rey, J., Santerne, A., Sousa, S., Santos, N. C., Strøm, P. A., Tsantaki, M., Udry, S., Universidade do Porto, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pythéas (OSU PYTHEAS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Departamento de Matemática y Fı́sica Aplicadas [Concepcion] (DMFA), Universidad Católica de la Santísima Concepción (UCSC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Universidade do Porto = University of Porto, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; Context. Due to their low transit probability, the long-period planets are, as a population, only partially probed by transit surveys. Radial velocity surveys thus have a key role to play, in particular for giant planets. Cold Jupiters induce a typical radial velocity semi-amplitude of 10 m s −1 , which is well within the reach of multiple instruments that have now been in operation for more than a decade. Aims. We take advantage of the ongoing radial velocity survey with the SOPHIE high-resolution spectrograph, which continues the search started by its predecessor ELODIE to further characterize the cold Jupiter population. Methods. Analyzing the radial velocity data from six bright solar-like stars taken over a period of up to 15 yr, we attempt the detection and confirmation of Keplerian signals. Results. We announce the discovery of six planets, one per system, with minimum masses in the range 4.8–8.3 M jup and orbital periods between 200 days and 10 yr. The data do not provide enough evidence to support the presence of additional planets in any of these systems. The analysis of stellar activity indicators confirms the planetary nature of the detected signals. Conclusions. These six planets belong to the cold and massive Jupiter population, and four of them populate its eccentric tail. In this respect, HD 80869 b stands out as having one of the most eccentric orbits, with an eccentricity of 0.862 −0.018 +0.028 . These planets can thus help to better constrain the migration and evolution processes at play in the gas giant population. Furthermore, recent works presenting the correlation between small planets and cold Jupiters indicate that these systems are good candidates to search for small inner planets.
- Published
- 2021
34. The PLATO 2.0 mission
- Author
-
Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-Dalsgaard, J., Deleuil, M., Gizon, L., Goupil, M.-J., Güdel, M., Janot-Pacheco, E., Mas-Hesse, M., Pagano, I., Piotto, G., Pollacco, D., Santos, Ċ., Smith, A., Suárez, J.-C., Szabó, R., Udry, S., Adibekyan, V., Alibert, Y., Almenara, J.-M., Amaro-Seoane, P., Eiff, M. Ammler-von, Asplund, M., Antonello, E., Barnes, S., Baudin, F., Belkacem, K., Bergemann, M., Bihain, G., Birch, A. C., Bonfils, X., Boisse, I., Bonomo, A. S., Borsa, F., Brandão, I. M., Brocato, E., Brun, S., Burleigh, M., Burston, R., Cabrera, J., Cassisi, S., Chaplin, W., Charpinet, S., Chiappini, C., Church, R. P., Csizmadia, Sz., Cunha, M., Damasso, M., Davies, M. B., Deeg, H. J., Díaz, R. F., Dreizler, S., Dreyer, C., Eggenberger, P., Ehrenreich, D., Eigmüller, P., Erikson, A., Farmer, R., Feltzing, S., Oliveira Fialho, F. de, Figueira, P., Forveille, T., Fridlund, M., García, R. A., Giommi, P., Giuffrida, G., Godolt, M., da Silva, J. Gomes, Granzer, T., Grenfell, J. L., Grotsch-Noels, A., Günther, E., Haswell, C. A., Hatzes, A. P., Hébrard, G., Hekker, S., Helled, R., Heng, K., Jenkins, J. M., Johansen, A., Khodachenko, M. L., Kislyakova, K. G., Kley, W., Kolb, U., Krivova, N., Kupka, F., Lammer, H., Lanza, A. F., Lebreton, Y., Magrin, D., Marcos-Arenal, P., Marrese, P. M., Marques, J. P., Martins, J., Mathis, S., Mathur, S., Messina, S., Miglio, A., Montalban, J., Montalto, M., P. F. G. Monteiro, M. J., Moradi, H., Moravveji, E., Mordasini, C., Morel, T., Mortier, A., Nascimbeni, V., Nelson, R. P., Nielsen, M. B., Noack, L., Norton, A. J., Ofir, A., Oshagh, M., Ouazzani, R.-M., Pápics, P., Parro, V. C., Petit, P., Plez, B., Poretti, E., Quirrenbach, A., Ragazzoni, R., Raimondo, G., Rainer, M., Reese, D. R., Redmer, R., Reffert, S., Rojas-Ayala, B., Roxburgh, I. W., Salmon, S., Santerne, A., Schneider, J., Schou, J., Schuh, S., Schunker, H., Silva-Valio, A., Silvotti, R., Skillen, I., Snellen, I., Sohl, F., Sousa, S. G., Sozzetti, A., Stello, D., Strassmeier, K. G., Švanda, M., Szabó, Gy. M., Tkachenko, A., Valencia, D., Van Grootel, V., Vauclair, S. D., Ventura, P., Wagner, F. W., Walton, N. A., Weingrill, J., Werner, S. C., Wheatley, P. J., and Zwintz, K.
- Published
- 2014
- Full Text
- View/download PDF
35. New constraints on the planetary system around the young active star AU Mic
- Author
-
Martioli, E., Hébrard, G., Correia, A., Laskar, J., Lecavelier Des Etangs, A., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-18-CE31-0019,SPlaSH,Recherche de planètes habitables avec SPIRou(2018)
- Subjects
photometric ,planetary systems -stars ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,activity -techniques ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,individual ,AU Mic -stars - Abstract
International audience; AU Microscopii (AU Mic) is a young, active star whose transiting planet was recently detected. Here, we report our analysis of its TESS light curve, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate in AU Mic of 6.35 flares per day for flares with amplitudes in the range of 0.06% < f max < 1.5% of the star flux. We employed a Bayesian Markov chain Monte Carlo analysis to model the five transits of AU Mic b observed by TESS, improving the constraints on the planetary parameters. The measured planet-to-star effective radius ratio of R p /R = 0.0496 ± 0.0007 implies a physical radius of 4.07 ± 0.17 R ⊕ and a planet density of 1.4 ± 0.4 g cm −3 , confirming that AU Mic b is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three available transits and obtained an orbital period of 18.859019 ± 0.000016 d and a planetary radius of 3.24 ± 0.16 R ⊕ , which defines AU Mic c as a warm Neptune-size planet with an expected mass in the range of 2.2 M ⊕ < M c < 25.0 M ⊕ , estimated from the population of exoplanets of similar sizes. The two planets in the AU Mic system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of
- Published
- 2021
36. Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets
- Author
-
Kiefer, F., Hébrard, G., Lecavelier Des Etangs, A., Martioli, E., Dalal, S., Vidal-Madjar, A., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
binaries: general ,astrometry ,planets and satellites: fundamental parameters ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,brown dwarfs - Abstract
International audience; Mass is one of the most important parameters for determining the true nature of an astronomical object. Yet, many published exoplanets lack a measurement of their true mass, in particular those detected as a result of radial-velocity (RV) variations of their host star. For those examples, only the minimum mass, or m sin i, is known, owing to the insensitivity of RVs to the inclination of the detected orbit compared to the plane of the sky. The mass that is given in databases is generally that of an assumed edge-on system (~90°), but many other inclinations are possible, even extreme values closer to 0° (face-on). In such a case, the mass of the published object could be strongly underestimated by up to two orders of magnitude. In the present study, we use GASTON, a recently developed tool taking advantage of the voluminous Gaia astrometric database to constrain the inclination and true mass of several hundreds of published exoplanet candidates. We find nine exoplanet candidates in the stellar or brown dwarf (BD) domain, among which six were never characterized. We show that 30 Ari B b, HD 141937 b, HD 148427 b, HD 6718 b, HIP 65891 b, and HD 16760 b have masses larger than 13.5 MJ at 3σ. We also confirm the planetary nature of 27 exoplanets, including HD 10180 c, d and g. Studying the orbital periods, eccentricities, and host-star metallicities in the BD domain, we found distributions with respect to true masses consistent with other publications. The distribution of orbital periods shows of a void of BD detections below ~100 d, while eccentricity and metallicity distributions agree with a transition between BDs similar to planets and BDs similar to stars in the range 40–50 MJ.
- Published
- 2021
37. Transiting exoplanets from the CoRoT space mission Resolving the nature of transit candidates for the LRa03 and SRa03 fields
- Author
-
Cavarroc, C., Moutou, C., Gandolfi, D., Tingley, B., Ollivier, M., Aigrain, S., Alonso, R., Almenara, J.-M., Auvergne, M., Baglin, A., Barge, P., Bonomo, A. S., Bordé, P., Bouchy, F., Cabrera, J., Carpano, S., Carone, L., Cochran, W. D., Csizmadia, S., Deeg, H. J., Deleuil, M., Díaz, R. F., Dvorak, R., Endl, M., Erikson, A., Fridlund, M., Gillon, M., Guenther, E. W., Guillot, T., Hatzes, A., Hébrard, G., Jorda, L., Léger, A., Lammer, H., Lev, T.-O., Lovis, C., MacQueen, P. J., Mazeh, T., Ofir, A., Parviainen, H., Pasternacki, T., Pätzold, M., Queloz, D., Rauer, H., Rouan, D., Samuel, B., Santerne, A., Schneider, J., Weingrill, J., and Wuchterl, G.
- Published
- 2012
- Full Text
- View/download PDF
38. Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones
- Author
-
Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Bréant, P., and Hébrard, G.
- Published
- 2008
- Full Text
- View/download PDF
39. Effect of solid characteristics on hydrodynamic and mass transfer in a fixed bed reactor operating in co-current gas–liquid up flow
- Author
-
Maldonado, J.G. Garcia, Bastoul, D., Baig, S., Roustan, M., and Hébrard, G.
- Published
- 2008
- Full Text
- View/download PDF
40. Exoplanet discoveries with the CoRoT space observatory
- Author
-
Lammer, H., Dvorak, R., Deleuil, M., Barge, P., Deeg, H. J., Moutou, C., Erikson, A., Csizmadia, Sz., Tingley, B., Bruntt, H., Havel, M., Aigrain, S., Almenara, J. M., Alonso, R., Auvergne, M., Baglin, A., Barbieri, M., Benz, W., Bonomo, A. S., Bordé, P., Bouchy, F., Cabrera, J., Carone, L., Carpano, S., Ciardi, D., Ferraz-Mello, S., Fridlund, M., Gandolfi, D., Gazzano, J. -C., Gillon, M., Gondoin, P., Guenther, E., Guillot, T., den Hartog, R., Hasiba, J., Hatzes, A., Hidas, M., Hébrard, G., Jorda, L., Kabath, P., Léger, A., Lister, T., Llebaria, A., Lovis, C., Mayor, M., Mazeh, T., Mura, A., Ollivier, M., Ottacher, H., Pätzold, M., Pepe, F., Pont, F., Queloz, D., Rabus, M., Rauer, H., Rouan, D., Samuel, B., Schneider, J., Shporer, A., Stecklum, B., Steller, M., Street, R., Udry, S., Weingrill, J., and Wuchterl, G.
- Published
- 2010
- Full Text
- View/download PDF
41. Two families of exocomets in the β Pictoris system
- Author
-
Kiefer, F. F, des Etangs, Lecavelier A. A., Boissier, J. J, Vidal-Madjar, A. A, Beust, H. H, Lagrange, A.-M. A.-M, Hébrard, G. G, and Ferlet, R. R
- Published
- 2014
- Full Text
- View/download PDF
42. XIII. Two planets around M-dwarfs Gl617A and Gl96
- Author
-
Hobson, M. J., Díaz, R. F., Delfosse, X., Astudillo-Defru, N., Boisse, I., Bouchy, F., Bonfils, X., Forveille, T., Hara, N., Arnold, L., Borgniet, S., Bourrier, V., Brugger, B., Cabrera, N., Courcol, B., Dalal, S., Deleuil, M., Demangeon, O., Dumusque, X., Ehrenreich, D., Hébrard, G., Kiefer, F., Lopez, T., Mignon, L., Montagnier, G., Mousis, O., Moutou, C., Pepe, F., Rey, J., Santerne, A., Santos, N., Stalport, M., Ségransan, D., Udry, S., Wilson, P. A., Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut Pythéas (OSU PYTHEAS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Departamento de Matemática y Fı́sica Aplicadas [Concepcion] (DMFA), Universidad Católica de la Santísima Concepción (UCSC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Universidad de Concepción - University of Concepcion [Chile], Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Université de Genève = University of Geneva (UNIGE), Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto = University of Porto, University of Warwick [Coventry], Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Universidad de Concepción [Chile], Universidade do Porto [Porto], Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Universidade do Porto
- Subjects
[SDU]Sciences of the Universe [physics] ,stars: late-type ,techniques: radial velocities ,stars: individual: Gl617A ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,planetary systems ,stars: individual: Gl96 - Abstract
International audience; Aims. Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the northern hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additionally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline.Methods. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and ℓ1 periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique.Results. The SOPHIE data support the detection of five planets, each with m sin i ≈ 6 M⊕, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius ≈1.2 R⊕. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a ≈2 M⊕ mass estimate.Conclusions. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances.
- Published
- 2020
43. Transiting exoplanets from the CoRoT space mission
- Author
-
Bordé, P., Díaz, R., Creevey, O., Damiani, C., Deeg, H., Klagyivik, P., Wuchterl, G., Gandolfi, D., Fridlund, M., Bouchy, F., Aigrain, S., Alonso, R., Almenara, J.-M., Baglin, A., Barros, S., Bonomo, A., Cabrera, J., Csizmadia, Sz., Deleuil, M., Erikson, A., Ferraz-Mello, S., Guenther, E., Guillot, Tristan, Grziwa, S., Hatzes, A., Hébrard, G., Mazeh, T., Ollivier, M., Parviainen, H., Pätzold, M., Rauer, H., Rouan, D., Santerne, A., Schneider, J., Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (INAF), Consiglio Nazionale delle Ricerche [Roma] (CNR), Thüringer Landessternwarte Tautenburg (TLS), Department of Brain and Behavioural Sciences, University of Pavia, Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), School of Physics, University of Exeter, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Universidade do Porto, PSE-ENV/SEDRE/LETIS, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DLR Institute of Planetary Research, German Aerospace Center (DLR), Instituto de Astronomia, Geofísica e Ciências Atmosféricas [São Paulo] (IAG), Universidade de São Paulo (USP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Physics and Astronomy [Tel Aviv], Tel Aviv University [Tel Aviv], Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute for Geophysics and Meteorology [Köln] (IGM), University of Cologne, Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2020
44. Discovery and characterization of the exoplanets WASP-148b and c
- Author
-
Hébrard, G., Díaz, R. F., Correia, A. C. M., Collier Cameron, A., Laskar, J., Pollacco, D., Almenara, J.-M., Anderson, D. R., Barros, S. C. C., Boisse, I., Bonomo, A. S., Bouchy, F., Boué, G., Boumis, P., Brown, D. J. A., Dalal, S., Deleuil, M., Demangeon, O. D. S., Doyle, A. P., Haswell, C.A., Hellier, C., Osborn, H., Kiefer, F., Kolb, U.C., Lam, K., Lecavelier des Étangs, A., Lopez, T., Martin-Lagarde, M., Maxted, P., McCormac, J., Nielsen, L. D., Pallé, E., Prieto-Arranz, J., Queloz, D., Santerne, A., Smalley, B., Turner, O., Udry, S., Verilhac, D., West, R., Wheatley, P. J., and Wilson, P. A.
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We present the discovery and characterization of WASP-148, a new extrasolar system that includes at least two giant planets. The host star is a slowly rotating inactive late-G dwarf with a V = 12 magnitude. The planet WASP-148b is a hot Jupiter of 0.72 RJup and 0.29 MJup that transits its host with an orbital period of 8.80 days. We found the planetary candidate with the SuperWASP photometric survey, then characterized it with the SOPHIE spectrograph. Our radial velocity measurements subsequently revealed a second planet in the system, WASP-148c, with an orbital period of 34.5 days and a minimum mass of 0.40 MJup. No transits of this outer planet were detected. The orbits of both planets are eccentric and fall near the 4:1 mean-motion resonances. This configuration is stable on long timescales, but induces dynamical interactions so that the orbits differ slightly from purely Keplerian orbits. In particular, WASP-148b shows transit-timing variations of typically 15 min, making it the first interacting system with transit-timing variations that is detected on ground-based light curves. We establish that the mutual inclination of the orbital plane of the two planets cannot be higher than 35°, and the true mass of WASP-148c is below 0.60 MJup. We present photometric and spectroscopic observations of this system that cover a time span of ten years. We also provide their Keplerian and Newtonian analyses; these analyses should be significantly improved through future TESS observations.
- Published
- 2020
45. Theoretical study of the Lyman $\gamma$ $\gamma$ line profile of atomic hydrogen perturbed by collisions with protons: Lyman $\gamma$ $\gamma$ line profile
- Author
-
Allard, N. F., Kielkopf, J. F., Hébrard, G., and Peek, J. M.
- Published
- 2004
- Full Text
- View/download PDF
46. A transiting giant planet with a temperature between 250 K and 430 K
- Author
-
Deeg, H. J., Moutou, C., Erikson, A., Csizmadia, Sz., Tingley, B., Barge, P., Bruntt, H., Havel, M., Aigrain, S., Almenara, J. M., Alonso, R., Auvergne, M., Baglin, A., Barbieri, M., Benz, W., Bonomo, A. S., Bordé, P., Bouchy, F., Cabrera, J., Carone, L., Carpano, S., Ciardi, D., Deleuil, M., Dvorak, R., Ferraz-Mello, S., Fridlund, M., Gandolfi, D., Gazzano, J.-C., Gillon, M., Gondoin, P., Guenther, E., Guillot, T., Hartog, R. den, Hatzes, A., Hidas, M., Hébrard, G., Jorda, L., Kabath, P., Lammer, H., Léger, A., Lister, T., Llebaria, A., Lovis, C., Mayor, M., Mazeh, T., Ollivier, M., Pätzold, M., Pepe, F., Pont, F., Queloz, D., Rabus, M., Rauer, H., Rouan, D., Samuel, B., Schneider, J., Shporer, A., Stecklum, B., Street, R., Udry, S., Weingrill, J., and Wuchterl, G.
- Published
- 2010
- Full Text
- View/download PDF
47. T Tauri star V410 Tau in the eyes of SPIRou and TESS.
- Author
-
Finociety, B, Donati, J-F, Klein, B, Zaire, B, Lehmann, L, Moutou, C, Bouvier, J, Alencar, S H P, Yu, L, Grankin, K, Artigau, É, Doyon, R, Delfosse, X, Fouqué, P, Hébrard, G, Jardine, M, Kóspál, Á, Ménard, F, and consortium, SLS
- Subjects
STELLAR activity ,RADIAL velocity of stars ,KRIGING ,YIELD surfaces ,STELLAR magnetic fields ,MAGNETIC fields - Abstract
We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star V410 Tau based on data collected mostly with SPIRou, the near-infrared (NIR) spectropolarimeter recently installed at the Canada-France-Hawaii Telescope , as part of the SPIRou Legacy Survey large programme, and with TESS between October and December 2019. Using Zeeman–Doppler Imaging (ZDI), we obtained the first maps of photospheric brightness and large-scale magnetic field at the surface of this young star derived from NIR spectropolarimetric data. For the first time, ZDI is also simultaneously applied to high-resolution spectropolarimetric data and very-high-precision photometry. V410 Tau hosts both dark and bright surface features and magnetic regions similar to those previously imaged with ZDI from optical data, except for the absence of a prominent dark polar spot. The brightness distribution is significantly less contrasted than its optical equivalent, as expected from the difference in wavelength. The large-scale magnetic field (|${\sim}410$| G), found to be mainly poloidal, features a dipole of |${\sim}390$| G, again compatible with previous studies at optical wavelengths. NIR data yield a surface differential rotation slightly weaker than that estimated in the optical at previous epochs. Finally, we measured the radial velocity of the star and filtered out the stellar activity jitter using both ZDI and Gaussian Process Regression down to a precision of |${\sim}0.15$| and 0.08 |$\mathrm{km}\, \mathrm{s}^{-1}$| RMS, respectively, confirming the previously published upper limit on the mass of a potential close-in massive planet around V410 Tau. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
48. Seven new brown dwarfs and constraints on the brown dwarf desert
- Author
-
Kiefer, F., Hébrard, G., Sahlmann, J., Sousa, S. G., Forveille, T., Santos, N., Mayor, M., Deleuil, M., Wilson, P. A., Dalal, S., Díaz, R. F., Henry, G. W., Hagelberg, J., Hobson, M. J., Demangeon, O., Bourrier, V., Delfosse, X., Arnold, L., Astudillo-Defru, N., Beuzit, J.-L., Boisse, I., Bonfils, X., Borgniet, S., Bouchy, F., Courcol, B., Ehrenreich, D., Hara, N., Lagrange, A.-M., Lovis, C., Montagnier, G., Moutou, C., Pepe, F., Perrier, C., Rey, J., Santerne, A., Ségransan, D., Udry, S., Vidal-Madjar, A., Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto, Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Universidade do Porto = University of Porto, Université de Genève = University of Geneva (UNIGE), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universidade de Sao Paulo, Instituto Ocenografico, Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Universidade do Porto [Porto], University of Warwick [Coventry], Center of Excellence in Information Systems, Université Paris-Sud - Paris 11 (UP11), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Universidad de Concepción [Chile], Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD)
- Subjects
[PHYS]Physics [physics] ,observational -methods ,numerical ,[SDU]Sciences of the Universe [physics] ,radial velocities -methods ,techniques: radial velocities ,brown dwarfs -binaries ,methods: observational ,spectroscopic -techniques ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,binaries: spectroscopic ,methods: numerical ,brown dwarfs - Abstract
International audience; Context. Brown dwarfs (BD) are substellar objects intermediate between planets and stars with masses of 13-80 MJ. While isolated BDs are most likely produced by gravitational collapse in molecular clouds down to masses of a few MJ, a non-negligible fraction of low-mass companions might be formed through the planet-formation channel in protoplanetary discs. The upper mass limit of objects formed within discs is still observationally unknown, the main reason being the strong dearth of BD companions at orbital periods shorter than 10 yr, also known as the BD desert. Aims: To address this question, we aim at determining the best statistics of companions within the 10-100 MJ mass regime and located closer than 10 au to the primary star, while minimising observation and selection bias. Methods: We made extensive use of the radial velocity (RV) surveys of northern hemisphere FGK stars within 60 pc of the Sun, performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derived the Keplerian solutions of the RV variations of 54 sources. Public astrometric data of the HIPPARCOS and Gaia missions allowed us to constrain the masses of the companions for most sources. We introduce GASTON, a new method to derive inclination combining RVs and Keplerian and astrometric excess noise from Gaia DR1. Results: We report the discovery of 12 new BD candidates. For five of them, additional astrometric data led to a revision of their mass in the M-dwarf regime. Among the seven remaining objects, four are confirmed BD companions, and three others are likely also in this mass regime. Moreover, we report the detection of 42 M-dwarfs within the range of 90 MJ-0.52 M⊙. The resulting M sin i-P distribution of BD candidates shows a clear drop in the detection rate below 80-day orbital period. Above that limit, the BD desert appears rather wet, with a uniform distribution of the M sin i. We derive a minimum BD-detection frequency around Solar-like stars of 2.0 ± 0.5%. RV data are only available at the CDS and Tables B.1, B.3-B.7 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/631/A125
- Published
- 2019
49. The SOPHIE search for northern extrasolar planets
- Author
-
Cloutier, R., Berdiñas, Z., Ricker, G., Vanderspek, R., Latham, D., Seager, S., Winn, J., Jenkins, J., Almenara, J., Díaz, M., Doyon, R., Figueira, P., Kurtovic, N., Lovis, C., Mayor, M., Menou, K., Morgan, E., Morris, R., Muirhead, P., Murgas, F., Smith, J., Tenenbaum, P., Torres, G., Vezie, M., Villasenor, J., Hobson, M., Delfosse, X., Astudillo-Defru, N., Boisse, I., Díaz, R., Bouchy, F., Bonfils, Xavier, Forveille, T., Arnold, L., Borgniet, S., Bourrier, V., Brugger, B., Cabrera Salazar, N., Courcol, B., Dalal, S., Deleuil, M., Demangeon, O., Dumusque, X., Hara, N., Hébrard, G., Kiefer, F., Lopez, Téodolina, Mignon, L., Montagnier, G., Mousis, O., Moutou, C., Pepe, F., Rey, J., Santerne, A., Santos, N., Stalport, M., Ségransan, D., Udry, S., Wilson, P., Université du Québec à Rimouski (UQAR), Center for Space Research [Cambridge] (CSR), Massachusetts Institute of Technology (MIT), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universidad de Concepción [Chile], Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut Pythéas (OSU PYTHEAS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Concepción - University of Concepcion [Chile], Université de Genève = University of Geneva (UNIGE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; We present the detection of a warm Neptune orbiting the M dwarf Gl 378, using radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. The star was observed in the context of the SOPHIE exoplanet consortium’s sub-programme dedicated to finding planets around M dwarfs. Gl 378 is an M1 star, of solar metallicity, at a distance of 14.96 pc. The single planet detected, Gl 378 b, has a minimum mass of 13.02 MEarth and an orbital period of 3.82 days, which place it at the lower boundary of the hot Neptune desert. As one of only a few such planets around M dwarfs, Gl 378 b provides important clues to the evolutionary history of these close-in planets. In particular, the eccentricity of 0.1 may point to a high-eccentricity migration. The planet may also have lost part of its envelope due to irradiation.
- Published
- 2019
50. XIV. A temperate ( T eq ~ 300 K) super-earth around the nearby star Gliese 411
- Author
-
Díaz, R., Delfosse, X., Hobson, M., Boisse, I., Astudillo-Defru, N., Bonfils, Xavier, Henry, G., Arnold, L., Bouchy, F., Bourrier, V., Brugger, B., Dalal, S., Deleuil, M., Demangeon, O., Dolon, F., Dumusque, X., Forveille, T., Hara, N., Hébrard, G., Kiefer, F., Lopez, Téodolina, Mignon, L., Moreau, F., Mousis, O., Moutou, C., Pepe, F., Perruchot, S., Richaud, Y., Santerne, A., Santos, N., Sottile, R., Stalport, M., Ségransan, D., Udry, S., Unger, N., Wilson, P., Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universidad de Concepción [Chile], Center of Excellence in Information Systems, Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Observatoire de Haute-Provence (OHP), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto [Porto], University of Warwick [Coventry], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Universidade do Porto, Tennessee State University, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Genève = University of Geneva (UNIGE), Universidad de Concepción - University of Concepcion [Chile], and Universidade do Porto = University of Porto
- Subjects
Gl 411 ,stars: individual: Gl 411 ,stars: low-mass ,[SDU]Sciences of the Universe [physics] ,techniques: radial velocities ,individual ,radial velocities -stars ,planetary systems -techniques ,low-mass -stars ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,planetary systems - Abstract
International audience; Periodic radial velocity variations in the nearby M-dwarf star Gl 411 are reported, based on measurements with the SOPHIE spectrograph. Current data do not allow us to distinguish between a 12.95-day period and its one-day alias at 1.08 days, but favour the former slightly. The velocity variation has an amplitude of 1.6 m s-1, making this the lowest-amplitude signal detected with SOPHIE up to now. We have performed a detailed analysis of the significance of the signal and its origin, including extensive simulations with both uncorrelated and correlated noise, representing the signal induced by stellar activity. The signal is significantly detected, and the results from all tests point to its planetary origin. Additionally, the presence of an additional acceleration in the velocity time series is suggested by the current data. On the other hand, a previously reported signal with a period of 9.9 days, detected in HIRES velocities of this star, is not recovered in the SOPHIE data. An independent analysis of the HIRES dataset also fails to unveil the 9.9-day signal. If the 12.95-day period is the real one, the amplitude of the signal detected with SOPHIE implies the presence of a planet, called Gl 411 b, with a minimum mass of around three Earth masses, orbiting its star at a distance of 0.079 AU. The planet receives about 3.5 times the insolation received by Earth, which implies an equilibrium temperature between 256 and 350 K, and makes it too hot to be in the habitable zone. At a distance of only 2.5 pc, Gl 411 b, is the third closest low-mass planet detected to date. Its proximity to Earth will permit probing its atmosphere with a combination of high-contrast imaging and high-dispersion spectroscopy in the next decade. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/625/A17Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.