22 results on '"Grudd H"'
Search Results
2. Trees Tell of Past Climates: But Are They Speaking Less Clearly Today? [and Discussion]
- Author
-
Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Harris, I. C., Shiyatov, S. G., Vaganov, E. A., Grudd, H., and Cowie, J.
- Published
- 1998
3. Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden
- Author
-
Pritzkow, C., Heinrich, I., Grudd, H., and Helle, G.
- Published
- 2014
- Full Text
- View/download PDF
4. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation
- Author
-
Loader, N.J., Young, G.H.F., Grudd, H., and McCarroll, D.
- Published
- 2013
- Full Text
- View/download PDF
5. Dendroclimatology in Fennoscandia – from past accomplishments to future potential
- Author
-
Linderholm, H. W., Bjorklund, J. A., Seftigen, K., Gunnarson, B. E., Grudd, H., Jeong, J. -H, Igor Drobyshev, and Liu, Y.
- Subjects
lcsh:GE1-350 ,lcsh:Environmental pollution ,Wood fibre and forest products ,lcsh:Environmental protection ,lcsh:TD172-193.5 ,lcsh:TD169-171.8 ,lcsh:Environmental sciences - Abstract
Fennoscandia has a strong tradition in dendrochronology, and its large tracts of boreal forest make the region well suited for the development of tree-ring chronologies that extend back several thousands of years. Two of the world's longest continuous (most tree-ring chronologies are annually resolved) tree-ring width chronologies are found in northern Fennoscandia, with records from Torneträsk and Finnish Lapland covering the last ca. 7500 yr. In addition, several chronologies between coastal Norway and the interior of Finland extend back several centuries. Tree-ring data from Fennoscandia have provided important information on regional climate variability during the mid to late Holocene and have played major roles in the reconstruction of hemispheric and global temperatures. Tree-ring data from the region have also been used to reconstruct large-scale atmospheric circulation patterns, regional precipitation and drought. Such information is imperative when trying to reach better understanding of natural climate change and variability and its forcing mechanisms, and placing recent climate change within a long-term context.
- Published
- 2010
6. Cool North European summers and possible links to explosive volcanic eruptions
- Author
-
Jones, P. D, Melvin, T. M., Harpham, C., Grudd, H., and Helama, S.
- Published
- 2013
7. A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe
- Author
-
McCarroll, D., Loader, N.J., Jalkanen, R., Gagen, M.H., Grudd, H., Gunnarson, B.E., Kirchhefer, A.J., Friedrich, M., Linderholm, H.W., Lindholm, M., Boettger, T., Los, S.O., Remmele, S., Kononov, Y.M., Yamazaki, Y.H., Young, G.H.F., and Zorita, E.
- Subjects
ddc:551 - Abstract
Combining nine tree growth proxies from four sites, from the west coast of Norway to the Kola Peninsula of NW Russia, provides a well replicated (> 100 annual measurements per year) mean index of tree growth over the last 1200 years that represents the growth of much of the northern pine timberline forests of northern Fennoscandia. The simple mean of the nine series, z-scored over their common period, correlates strongly with mean June to August temperature averaged over this region (r = 0.81), allowing reconstructions of summer temperature based on regression and variance scaling. The reconstructions correlate significantly with gridded summer temperatures across the whole of Fennoscandia, extending north across Svalbard and south into Denmark. Uncertainty in the reconstructions is estimated by combining the uncertainty in mean tree growth with the uncertainty in the regression models. Over the last seven centuries the uncertainty is < 4.5% higher than in the 20th century, and reaches a maximum of 12% above recent levels during the 10th century. The results suggest that the 20th century was the warmest of the last 1200 years, but that it was not significantly different from the 11th century. The coldest century was the 17th. The impact of volcanic eruptions is clear, and a delayed recovery from pairs or multiple eruptions suggests the presence of some positive feedback mechanism. There is no clear and consistent link between northern Fennoscandian summer temperatures and solar forcing.
- Published
- 2013
- Full Text
- View/download PDF
8. Cloud response to summer temperatures in Fennoscandia over the last thousand years
- Author
-
Gagen, M., Zorita, E., McCarroll, D., Young, G.H.F., Grudd, H., Jalkanen, R., Loader, N.J., Robertson, I., and Kirchhefer, A.
- Subjects
ddc:551 - Abstract
Cloud cover is one of the most important factors controlling the radiation balance of the Earth. The response of cloud cover to increasing global temperatures represents the largest uncertainty in model estimates of future climate because the cloud response to temperature is not well-constrained. Here we present the first regional reconstruction of summer sunshine over the past millennium, based on the stable carbon isotope ratios of pine treerings from Fennoscandia. Comparison with the regional temperature evolution reveals the Little Ice Age (LIA) to have been sunny, with cloudy conditions in the warmest periods of the Medieval at this site. A negative shortwave cloud feedback is indicated at high latitude. A millennial climate simulation suggests that regionally low temperatures during the LIA were mostly maintained by a weaker greenhouse effect due to lower humidity. Simulations of future climate that display a negative shortwave cloud feedback for high-latitudes are consistent with our proxy interpretation.
- Published
- 2011
- Full Text
- View/download PDF
9. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium - Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing.
- Author
-
Moberg, A., Sundberg, R., Grudd, H., and Hind, A.
- Subjects
CLIMATE change ,DENDROCHRONOLOGY ,SCIENTIFIC observation ,ATMOSPHERIC temperature ,GREENHOUSE gases ,SOLAR energy & the environment - Abstract
A statistical framework for evaluation of climate model simulations by comparison with climate observations from instrumental and proxy data (part 1 in this series) is improved by the relaxation of two assumptions. This allows autocorrelation in the statistical model for simulated internal climate variability and enables direct comparison of two alternative forced simulations to test whether one fits the observations significantly better than the other. The extended framework is applied to a set of simulations driven with forcings for the pre-industrial period 1000-1849 CE and 15 tree-ring-based temperature proxy series. Simulations run with only one external forcing (land use, volcanic, smallamplitude solar, or large-amplitude solar) do not significantly capture the variability in the tree-ring data - although the simulation with volcanic forcing does so for some experiment settings. When all forcings are combined (using either the small- or large-amplitude solar forcing), including also orbital, greenhouse-gas and non-volcanic aerosol forcing, and additionally used to produce small simulation ensembles starting from slightly different initial ocean conditions, the resulting simulations are highly capable of capturing some observed variability. Nevertheless, for some choices in the experiment design, they are not significantly closer to the observations than when unforced simulations are used, due to highly variable results between regions. It is also not possible to tell whether the small-amplitude or large-amplitude solar forcing causes the multiple-forcing simulations to be closer to the reconstructed temperature variability. Proxy data from more regions and of more types, or representing larger regions and complementary seasons, are apparently needed for more conclusive results from model-data comparisons in the last millennium. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
10. Common temperature signal in four well-replicated tree growth series from northern Fennoscandia.
- Author
-
Lindholm, M., Aalto, T., Grudd, H., Mccarroll, D., Ogurtsov, M., and Jalkanen, R.
- Abstract
Four Nordic temperature proxies based on tree growth at the northern timberline - ring-width from Sweden and Finland, maximum latewood density from Sweden, and height increment from Finland - were compared. Three indexing methods were used to enhance the low (centennial and above), medium (decadal-to-multidecadal) and high (decadal-to-interannual) frequencies. The proxies are shown to have a strong temperature signal (common variance) at the interannual-to-multidecadal scale, while the multidecadal-to-centennial trends are less coherent, perhaps reflecting intra-regional differences in growing conditions but more likely due to the more noisy regional curve standardization method used to retain the longest trends. Various methods of combining the four proxy series were explored and tested by comparison with four long temperature records from northern Fennoscandia. Only relatively high-frequency, spline-indexed series produced consistently positive verification statistics as a reconstruction model for summer temperature using all four proxies. Copyright © 2012 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
11. New ice core evidence for a volcanic cause of the A.D. 536 dust veil.
- Author
-
Larsen, L. B., Vinther, B. M., Briffa, K. R., Melvin, T. M., Clausen, H. B., Jones, P. D., Siggaard-Andersen, M.-L., Hammer, C. U., Eronen, M., Grudd, H., Gunnarson, B. E., Hantemirov, R. M., Naurzbaev, M. M., and Nicolussi, K.
- Published
- 2008
- Full Text
- View/download PDF
12. Airborne DNA reveals predictable spatial and seasonal dynamics of fungi.
- Author
-
Abrego N, Furneaux B, Hardwick B, Somervuo P, Palorinne I, Aguilar-Trigueros CA, Andrew NR, Babiy UV, Bao T, Bazzano G, Bondarchuk SN, Bonebrake TC, Brennan GL, Bret-Harte S, Bässler C, Cagnolo L, Cameron EK, Chapurlat E, Creer S, D'Acqui LP, de Vere N, Desprez-Loustau ML, Dongmo MAK, Jacobsen IBD, Fisher BL, Flores de Jesus M, Gilbert GS, Griffith GW, Gritsuk AA, Gross A, Grudd H, Halme P, Hanna R, Hansen J, Hansen LH, Hegbe ADMT, Hill S, Hogg ID, Hultman J, Hyde KD, Hynson NA, Ivanova N, Karisto P, Kerdraon D, Knorre A, Krisai-Greilhuber I, Kurhinen J, Kuzmina M, Lecomte N, Lecomte E, Loaiza V, Lundin E, Meire A, Mešić A, Miettinen O, Monkhouse N, Mortimer P, Müller J, Nilsson RH, Nonti PYC, Nordén J, Nordén B, Norros V, Paz C, Pellikka P, Pereira D, Petch G, Pitkänen JM, Popa F, Potter C, Purhonen J, Pätsi S, Rafiq A, Raharinjanahary D, Rakos N, Rathnayaka AR, Raundrup K, Rebriev YA, Rikkinen J, Rogers HMK, Rogovsky A, Rozhkov Y, Runnel K, Saarto A, Savchenko A, Schlegel M, Schmidt NM, Seibold S, Skjøth C, Stengel E, Sutyrina SV, Syvänperä I, Tedersoo L, Timm J, Tipton L, Toju H, Uscka-Perzanowska M, van der Bank M, van der Bank FH, Vandenbrink B, Ventura S, Vignisson SR, Wang X, Weisser WW, Wijesinghe SN, Wright SJ, Yang C, Yorou NS, Young A, Yu DW, Zakharov EV, Hebert PDN, Roslin T, and Ovaskainen O
- Subjects
- Mycorrhizae genetics, Mycorrhizae classification, Mycorrhizae isolation & purification, Phylogeny, Spores, Fungal classification, Spores, Fungal isolation & purification, Temperature, Tropical Climate, Geographic Mapping, Air Microbiology, Biodiversity, DNA, Fungal analysis, DNA, Fungal genetics, Fungi genetics, Fungi classification, Fungi isolation & purification, Seasons, Spatio-Temporal Analysis
- Abstract
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions
1,2 . To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3 . The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5 ., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
13. Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA.
- Author
-
Ovaskainen O, Abrego N, Furneaux B, Hardwick B, Somervuo P, Palorinne I, Andrew NR, Babiy UV, Bao T, Bazzano G, Bondarchuk SN, Bonebrake TC, Brennan GL, Bret-Harte S, Bässler C, Cagnolo L, Cameron EK, Chapurlat E, Creer S, D'Acqui LP, de Vere N, Desprez-Loustau ML, Dongmo MAK, Dyrholm Jacobsen IB, Fisher BL, Flores de Jesus M, Gilbert GS, Griffith GW, Gritsuk AA, Gross A, Grudd H, Halme P, Hanna R, Hansen J, Hansen LH, Hegbe ADMT, Hill S, Hogg ID, Hultman J, Hyde KD, Hynson NA, Ivanova N, Karisto P, Kerdraon D, Knorre A, Krisai-Greilhuber I, Kurhinen J, Kuzmina M, Lecomte N, Lecomte E, Loaiza V, Lundin E, Meire A, Mešić A, Miettinen O, Monkhause N, Mortimer P, Müller J, Nilsson RH, Nonti PYC, Nordén J, Nordén B, Paz C, Pellikka P, Pereira D, Petch G, Pitkänen JM, Popa F, Potter C, Purhonen J, Pätsi S, Rafiq A, Raharinjanahary D, Rakos N, Rathnayaka AR, Raundrup K, Rebriev YA, Rikkinen J, Rogers HMK, Rogovsky A, Rozhkov Y, Runnel K, Saarto A, Savchenko A, Schlegel M, Schmidt NM, Seibold S, Skjøth C, Stengel E, Sutyrina SV, Syvänperä I, Tedersoo L, Timm J, Tipton L, Toju H, Uscka-Perzanowska M, van der Bank M, Herman van der Bank F, Vandenbrink B, Ventura S, Vignisson SR, Wang X, Weisser WW, Wijesinghe SN, Joseph Wright S, Yang C, Yorou NS, Young A, Yu DW, Zakharov EV, Hebert PDN, and Roslin T
- Subjects
- Fungi genetics, Fungi classification, Biodiversity, Air Microbiology, Spores, Fungal, DNA, Fungal analysis
- Abstract
Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m
3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
14. Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate.
- Author
-
Björklund J, Seftigen K, Stoffel M, Fonti MV, Kottlow S, Frank DC, Esper J, Fonti P, Goosse H, Grudd H, Gunnarson BE, Nievergelt D, Pellizzari E, Carrer M, and von Arx G
- Subjects
- Global Warming history, Global Warming statistics & numerical data, Reproducibility of Results, History, Medieval, History, 21st Century, Climate Models, Uncertainty, Internationality, Climate Change history, Climate Change statistics & numerical data, Temperature, Trees anatomy & histology, Trees growth & development, Pinus anatomy & histology, Pinus growth & development
- Abstract
Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era
1 . However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3 , in contrast to simulation experiments at regional scales4 . This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5 . Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
15. Author Correction: Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE.
- Author
-
Büntgen U, Wacker L, Galván JD, Arnold S, Arseneault D, Baillie M, Beer J, Bernabei M, Bleicher N, Boswijk G, Bräuning A, Carrer M, Ljungqvist FC, Cherubini P, Christl M, Christie DA, Clark PW, Cook ER, D'Arrigo R, Davi N, Eggertsson Ó, Esper J, Fowler AM, Gedalof Z, Gennaretti F, Grießinger J, Grissino-Mayer H, Grudd H, Gunnarson BE, Hantemirov R, Herzig F, Hessl A, Heussner KU, Jull AJT, Kukarskih V, Kirdyanov A, Kolář T, Krusic PJ, Kyncl T, Lara A, LeQuesne C, Linderholm HW, Loader NJ, Luckman B, Miyake F, Myglan VS, Nicolussi K, Oppenheimer C, Palmer J, Panyushkina I, Pederson N, Rybníček M, Schweingruber FH, Seim A, Sigl M, Churakova Sidorova O, Speer JH, Synal HA, Tegel W, Treydte K, Villalba R, Wiles G, Wilson R, Winship LJ, Wunder J, Yang B, and Young GHF
- Abstract
The original version of this Article contained an error in the Data Availability section, which incorrectly read 'All data will be freely available via https://www.ams.ethz.ch/research.html .' The correct version states ' http://www.ams.ethz.ch/research/published-data.html ' in place of ' https://www.ams.ethz.ch/research.html '. This has been corrected in both the PDF and HTML versions of the Article.
- Published
- 2018
- Full Text
- View/download PDF
16. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE.
- Author
-
Büntgen U, Wacker L, Galván JD, Arnold S, Arseneault D, Baillie M, Beer J, Bernabei M, Bleicher N, Boswijk G, Bräuning A, Carrer M, Ljungqvist FC, Cherubini P, Christl M, Christie DA, Clark PW, Cook ER, D'Arrigo R, Davi N, Eggertsson Ó, Esper J, Fowler AM, Gedalof Z, Gennaretti F, Grießinger J, Grissino-Mayer H, Grudd H, Gunnarson BE, Hantemirov R, Herzig F, Hessl A, Heussner KU, Jull AJT, Kukarskih V, Kirdyanov A, Kolář T, Krusic PJ, Kyncl T, Lara A, LeQuesne C, Linderholm HW, Loader NJ, Luckman B, Miyake F, Myglan VS, Nicolussi K, Oppenheimer C, Palmer J, Panyushkina I, Pederson N, Rybníček M, Schweingruber FH, Seim A, Sigl M, Churakova Sidorova O, Speer JH, Synal HA, Tegel W, Treydte K, Villalba R, Wiles G, Wilson R, Winship LJ, Wunder J, Yang B, and Young GHF
- Abstract
Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the
14 C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct14 C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved14 C measurements are needed.- Published
- 2018
- Full Text
- View/download PDF
17. Spatial variability and temporal trends in water-use efficiency of European forests.
- Author
-
Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RT, Andreu-Hayles L, Boettger T, Dorado Liñán I, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanič T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM, and Young GH
- Subjects
- Carbon Isotopes analysis, Europe, Geography, Time Factors, Carbon Cycle physiology, Carbon Dioxide metabolism, Climate Change, Forests, Models, Theoretical, Trees growth & development, Water Cycle physiology
- Abstract
The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data., (© 2014 John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
18. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: the Ghost, the Crown and the Sword.
- Author
-
Fors Y, Grudd H, Rindby A, Jalilehvand F, Sandström M, Cato I, and Bornmalm L
- Subjects
- Wood microbiology, X-Ray Diffraction, Iron chemistry, Seawater, Sulfur chemistry, Wood chemistry
- Abstract
Sulfur and iron concentrations in wood from three 17(th) century shipwrecks in the Baltic Sea, the Ghost wreck, the Crown and the Sword, were obtained by X-ray fluorescence (XRF) scanning. In near anaerobic environments symbiotic microorganisms degrade waterlogged wood, reduce sulfate and promote accumulation of low-valent sulfur compounds, as previously found for the famous wrecks of the Vasa and Mary Rose. Sulfur K-edge X-ray absorption near-edge structure (XANES) analyses of Ghost wreck wood show that organic thiols and disulfides dominate, together with elemental sulfur probably generated by sulfur-oxidizing Beggiatoa bacteria. Iron sulfides were not detected, consistent with the relatively low iron concentration in the wood. In a museum climate with high atmospheric humidity oxidation processes, especially of iron sulfides formed in the presence of corroding iron, may induce post-conservation wood degradation. Subject to more general confirmation by further analyses no severe conservation concerns are expected for the Ghost wreck wood.
- Published
- 2014
- Full Text
- View/download PDF
19. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF).
- Author
-
Smith KT, Balouet JC, Shortle WC, Chalot M, Beaujard F, Grudd H, Vroblesky DA, and Burken JG
- Subjects
- Calcium chemistry, Environmental Monitoring methods, Potassium chemistry, Trees chemistry, Trees physiology, Zinc chemistry, Metals chemistry, Spectrometry, X-Ray Emission
- Abstract
Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations., (Published by Elsevier Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
20. Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site.
- Author
-
Balouet JC, Burken JG, Karg F, Vroblesky D, Smith KT, Grudd H, Rindby A, Beaujard F, and Chalot M
- Subjects
- Germany, Groundwater analysis, Halogenation, Solvents analysis, Trees ultrastructure, Chlorine Compounds analysis, Environmental Monitoring methods, Soil Pollutants analysis, Trees chemistry
- Abstract
Trees can take up and assimilate contaminants from the soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This investigation demonstrates that dendrochemistry can be used to generate historical scenarios of past contamination of groundwater by chlorinated solvents at a site in Verl, Germany. Increment cores from trees at the Verl site were collected and analyzed by energy-dispersive X-ray fluorescence (EDXRF) line scanning. The EDXRF profiles showed four to six time periods where tree rings had anomalously high concentrations of chlorine (Cl) as an indicator of potential contamination by chlorinated solvents.
- Published
- 2012
- Full Text
- View/download PDF
21. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia.
- Author
-
Briffa KR, Shishov VV, Melvin TM, Vaganov EA, Grudd H, Hantemirov RM, Eronen M, and Naurzbaev MM
- Subjects
- Asia, Europe, Geography, Greenhouse Effect, Models, Theoretical, Temperature, Trees growth & development
- Abstract
This paper describes variability in trends of annual tree growth at several locations in the high latitudes of Eurasia, providing a wide regional comparison over a 2000-year period. The study focuses on the nature of local and widespread tree-growth responses to recent warming seen in instrumental observations, available in northern regions for periods ranging from decades to a century. Instrumental temperature data demonstrate differences in seasonal scale of Eurasian warming and the complexity and spatial diversity of tree-growing-season trends in recent decades. A set of long tree-ring chronologies provides empirical evidence of association between inter-annual tree growth and local, primarily summer, temperature variability at each location. These data show no evidence of a recent breakdown in this association as has been found at other high-latitude Northern Hemisphere locations. Using Kendall's concordance, we quantify the time-dependent relationship between growth trends of the long chronologies as a group. This provides strong evidence that the extent of recent widespread warming across northwest Eurasia, with respect to 100- to 200-year trends, is unprecedented in the last 2000 years. An equivalent analysis of simulated temperatures using the HadCM3 model fails to show a similar increase in concordance expected as a consequence of anthropogenic forcing.
- Published
- 2008
- Full Text
- View/download PDF
22. Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings.
- Author
-
Roig FA, Le-Quesne C, Boninsegna JA, Briffa KR, Lara A, Grudd H, Jones PD, and Villagrán C
- Subjects
- Chile, Chronology as Topic, Fossils, Mass Spectrometry, Seasons, Climate, Cycadopsida, Trees growth & development
- Abstract
High-resolution proxies of past climate are essential for a better understanding of the climate system. Tree rings are routinely used to reconstruct Holocene climate variations at high temporal resolution, but only rarely have they offered insight into climate variability during earlier periods. Fitzroya cupressoides-a South American conifer which attains ages up to 3,600 years-has been shown to record summer temperatures in northern Patagonia during the past few millennia. Here we report a floating 1,229-year chronology developed from subfossil stumps of F. cupressoides in southern Chile that dates back to approximately 50,000 14C years before present. We use this chronology to calculate the spectral characteristics of climate variability in this time, which was probably an interstadial (relatively warm) period. Growth oscillations at periods of 150-250, 87-94, 45.5, 24.1, 17.8, 9.3 and 2.7-5.3 years are identified in the annual subfossil record. A comparison with the power spectra of chronologies derived from living F. cupressoides trees shows strong similarities with the 50,000-year-old chronology, indicating that similar growth forcing factors operated in this glacial interstadial phase as in the current interglacial conditions.
- Published
- 2001
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.