194 results on '"Gorelenkov, N."'
Search Results
2. Ion cyclotron emission studies: Retrospects and prospects
- Author
-
Gorelenkov, N. N.
- Published
- 2016
- Full Text
- View/download PDF
3. Description of global EGAM in the maximum of local frequency during current ramp-up discharges in DIII-D.
- Author
-
Camilo de Souza, F., Gorelenkov, N., Elfimov, A., Galvão, R., Collins, C., Podesta, M., and Fredrickson, E.
- Subjects
- *
DISPERSION relations , *DISTRIBUTION (Probability theory) , *TOROIDAL plasma , *NEUTRAL beams , *SAFETY factor in engineering , *PLASMA waves , *Q-switched lasers - Abstract
Energetic-particle-induced geodesic acoustic modes, EGAMs (Fu, Phys. Rev. Let., vol. 101, 2008, pp. 185002), driven by neutral beam injection (NBI), have been observed in many DIII-D tokamak experiments (Nazikian et al., Phys. Rev. Lett., vol. 101, 2008, pp. 185001). This mechanism has been theoretically investigated in (Qiu et al., Plasma Phys. Control. Fusion, vol. 52, 2010, pp. 095003), using a sharp energetic particle distribution function, and in (Qu et al., Plasma Phys. Control. Fusion, vol. 59, 2017, pp. 055018), where the dispersion relation and eigenmode behaviour were obtained for the situation of early beam scenario, that is, for times smaller than the beam slowing down time. In this work, we extend these studies determining the eigenmode for beyond the slowing down time, in a scenario with reverse safety factor $q$ profile, where a small concentration of energetic ions can produce an off-axis maximum in the GAM dispersion relation. The characteristics of EGAM are analytically studied with the drift kinetic equation together with the MHD code NOVA. The toroidal energetic ion transit frequency, coupled with the GAM frequency, produces the maximum in the dispersion relation where the eigenmode can be found. The quantitative correspondence of experimental results with the predictions of the proposed model is analysed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. Impact of suprathermal ions on neutron yield in the pre-DT phase of ITER operation.
- Author
-
Polevoi, A.R., Loarte, A., Bilato, R., Gorelenkov, N., Kazakov, Ye.O., Polunovskiy, E., Tchistiakov, A., Fable, E., Kiptily, V., Krasilnikov, A.V., Kuyanov, A.Y., Nazikian, R., Pinches, S.D., and Schneider, M.
- Subjects
ELECTRON cyclotron resonance heating ,ION bombardment ,CYCLOTRON resonance ,NEUTRONS ,FAST ions ,HELIUM plasmas - Abstract
An assessment of neutron production during the pre-fusion power-operation (PFPO) phase has been carried out for a representative set of plasma scenarios predicted by the ITER Research Plan. A range of heating systems, namely neutral beam injection (NBI) (hydrogen), electron cyclotron resonance heating (ECRH), and ion cyclotron resonance heating (ICRH) are planned to be used for PFPO studies in helium, hydrogen, and mixed hydrogen–helium plasmas. Fast ions (protons and
3 He) originating from NBI and ICRH systems can increase neutron production in PFPO plasmas by directly interacting with intrinsic Be impurities or through secondary processes, as also evidenced at JET. The generation of fast ions in ITER PFPO scenarios has been modelled using the ASTRA-NBI and TORIC-SSFPQL codes. A significant impact of the synergy between hydrogen NBI and hydrogen-minority ICRH on neutron production in helium plasmas is reported. In addition, the stability of the toroidicity-induced Alfvén eigenmodes (TAE) is analyzed for PFPO plasmas with a high pressure of suprathermal ions and a weak reversed shear. The possible impact of sawtooth oscillations and TAEs on neutron production is discussed, based on a linear stability analysis. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
5. Phase-space dynamics of Alfvén mode chirping.
- Author
-
White, R. B., Duarte, V. N., Gorelenkov, N. N., Fredrickson, E. D., and Podesta, M.
- Subjects
DELOCALIZATION energy ,GRANULAR flow ,FAST ions ,CHIRP modulation ,TOROIDAL plasma ,PHASE space - Abstract
In tokamak discharges, toroidal Alfvén eigenmodes often experience complex semi-periodic frequency modulation known as chirping. These events modify the local high energy particle distribution and are expected to occur in many future fusion devices, which include energetic beams or fusion products. This paper presents a study of simulations of mode chirping made in order to better understand its phase-space properties in a realistic tokamak configuration. We find a mechanism that permits rapid repeated chirping with strong amplitude variation in each chirp. Each chirp is associated with an amplitude crash to low magnitude and local manipulation of the density gradients through a shift of mode phase through π. The chirping produces high density clumps, which propagate down the fast ion density gradient and low density holes that propagate up the density gradient away from the resonance. This flow of particles across the resonance provides an energy source and local gradients for repeated chirping. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. Overview of the JET results with the ITER-like wall
- Author
-
Romanelli, F., Abel, I., Afanesyev, V., Aftanas, M., Agarici, G., Aggarwal, K. M., Aho-Mantila, L., Ahonen, E., Aints, M., Airila, M., Akers, R., Alarcon, Th., Albanese, R., Alexeev, A., Alfier, A., Allan, P., Almaviva, S., Alonso, A., Alper, B., Altmann, H., Alves, D., Ambrosino, G., Amosov, V., Andersson, F., Andersson Sundén, E., Andreev, V., Andrew, Y., Angelone, M., Anghel, M., Anghel, A., Angioni, C., Apruzzese, G., Arcis, N., Arena, P., Argouarch, A., Ariola, M., Armitano, A., Armstrong, R., Arnoux, G., Arshad, S., Artaserse, G., Artaud, J. F., Ash, A., Asp, E., Asunta, O., Atanasiu, C. V., Atkins, G., Avotina, L., Axton, M. D., Ayres, C., Baciero, A., Bailescu, V., Baiocchi, B., Baker, R. A., Balboa, I., Balden, M., Balorin, C., Balshaw, N., Banks, J. W., Baranov, Y. F., Barbier, D., Barlow, I. L., Barnard, M. A., Barnsley, R., Barrena, L., Barrera, L., Baruzzo, M., Basiuk, V., Bateman, G., Batistoni, P., Baumgarten, N., Baylor, L., Bazylev, B., Beaumont, P. S., Beausang, K., Bã©coulet, M., Bekris, N., Beldishevski, M., Bell, A. C., Belli, F., Bellinger, M., Bellizio, T., Belo, P. S. A., Belonohy, Ã., Bennett, P. E., Benterman, N. A., Berger-By, G., Bergsã¥ker, H., Berk, H., Bernardo, J., Bernert, M., Bertrand, B., Beurskens, M. N. A., Bieg, B., Bienkowska, B., Biewer, T. M., Bigi, M., Bãlkovã¡, P., Bin, W., Bird, J., Bizarro, J., Bjã¶rkas, C., Blackman, T. R., Blanchard, P., Blanco, E., Blum, J., Bobkov, V., Boboc, A., Boilson, D., Bolshakova, I., Bolzonella, T., Boncagni, L., Bonheure, G., Bonnin, X., Borba, D., Borthwick, A., Botrugno, A., Boulbe, C., Bouquey, F., Bourdelle, C., Bovert, K. v., Bowden, M., Boyce, T., Boyer, H. J., Bozhenkov, A., Brade, R. J., Bradshaw, J. M. A., Braet, J., Braic, V., Braithwaite, G. C., Brault, C., Breizman, B., Bremond, S., Brennan, P. D., Brett, A., Breue, J., Brezinsek, S., Bright, M. D. J., Briscoe, F., Brix, M., Brombin, M., Brown, B. C., Brown, D. P. D., Brzozowski, J., Bucalossi, J., Buckley, M. A., Budd, T., Budny, R. V., Bunting, P., Buratti, P., Burcea, G., Burckhart, A., Butcher, P. R., Buttery, R. J., Cahyna, P., Calabrã², G., Callaghan, C. P., Caminade, J. P., Camp, P. G., Campling, D. C., Caniello, R., Canik, J., Cannas, B., Capel, A. J., Carannante, G., Card, P. J., Cardinali, A., Carlstrom, T., Carman, P., Carralero, D., Carraro, L., Carter, T., Carvalho, B. B., Carvalho, I., Carvalho, P., Casati, A., Castaldo, C., Caughman, J., Cavazzana, R., Cavinato, M., Cecconello, M., Cecil, E., Cecil, F. E., Cenedese, A., Centioli, C., Cesario, R., Challis, C. D., Chandler, M., Chang, C., Chankin, A., Chapman, I. T., Chektybayev, B., Chernyshova, M., Child, D. J., Chiru, P., Chitarin, G., Chugonov, I., Chugunov, I., Ciric, D., Clairet, F., Clarke, R. H., Clay, R., Clever, M., Coad, J. P., Coates, P. A., Cocilovo, V., Coda, S., Coelho, R., Coenen, J., Coffey, I., Colas, L., Cole, M., Collins, S., Combs, S., Compan, J., Conboy, J. E., Conroy, S., Cook, N., Cook, S. P., Coombs, D., Cooper, S. R., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Counsell, G. F., Courtois, X., Cox, M., Craciunescu, T., Cramp, S., Crisanti, F., Croci, G., Croft, O., Crombe, K., Crombã©, K., Crowley, B. J., Cruz, N., Cseh, G., Cupido, L., Curuia, M., Cusack, R. A., Czarnecka, A., Czarski, T., Dalley, S., Daly, E. T., Dalziel, A., Daniel, R., Darrow, D., David, O., Davies, N., Davies, W., Davis, J. J., Day, I. E., Day, C., De Angelis, R., De Arcas, G., De Baar, M. R., De La Cal, E., De La Luna, E., De Pablos, J. L., De Tommasi, G., De Vries, P. C., De-Angelis, R., Degli Agostini, F., Delabie, E., Del-Castillo-Negrete, D., Delpech, L., Denisov, G., Denyer, A. J., Denyer, R. F., Devaux, S., Devynck, P., Di Matteo, L., Di Pace, L., Dirken, P. J., Dittmar, T., Dodt, D., Dnestrovskiy, A., Doerner, R., Doldatov, S., Dominiczak, K., Dooley, P., Dorling, S. E., Douai, D., Down, A. P., Doyle, P. T., Drake, J. R., Dreischuh, T., Drozdov, V., Dumortier, P., Dunai, D., Duran, I., Durodiã©, F., Dutta, P., Dux, R., Dylst, K., Eaton, R., Edlington, T., Edwards, A. M., Edwards, D. T., Edwards, P. K., Eich, Th., Ekedahl, A., Elevant, T., Ellingboe, B., Elsmore, C. G., Emmoth, B., Erdei, G., Ericsson, G., Eriksson, L. G., Eriksson, A., Esposito, B., Esser, H. G., Estrada, T., Evangelidis, E. A., Evans, G. E., Ewart, G. D., Ewers, D. T., Falchetto, G., Falie, D., Fanthome, J. G. A., Farthing, J. W., Fasoli, A., Faugeras, B., Fedorczak, N., Felton, R. C., Fenzi, C., Fernades, A., Fernandes, H., Ferreira, J. A., Ferreira, J., Ferron, J., Fessey, J. A., Figini, L., Figueiredo, J., Figueiredo, A., Finburg, P., Finken, K. H., Fischer, U., Fitzgerald, N., Flanagan, J., Fleming, C., Forbes, A. D., Ford, O., Formisano, A., Fraboulet, D., Francis, R. J., Frassinetti, L., Fresa, R., Friconneau, J. P., Frigione, D., Fullard, K., Fundamenski, W., Furno Palumbo, M., Gã¡l, K., Gao, X., Garavaglia, S., Garbet, X., Garcia, J., Garcia Munoz, M., Gardner, W., Garibaldi, P., Garnier, D., Garzotti, L., Gatu Johnson, M., Gaudio, P., Gauthier, E., Gaze, J. W., Gear, D. F., Gedney, J., Gee, S. J., Gelfusa, M., Genangeli, E., Gerasimov, S., Geraud, A., Gerbaud, T., Gherendi, M., Ghirelli, N., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Gil, C., Gilligan, S. J., Gimblett, C. G., Gin, D., Giovannozzi, E., Giroud, C., Giruzzi, G., Godwin, J., Goff, J. K., Gohil, P., Gã³jska, A., Goloborod'Ko, V., Gonã§alves, B., Goniche, M., Gonzales, S., González De Vicente, S. M., Goodyear, A., Gorelenkov, N., Gorini, G., Goulding, R., Graham, B., Graham, D., Graham, M. E., Graves, J., Green, N. R., Greuner, H., Grigore, E., Griph, F. S., Grisolia, C., Gros, G., Groth, M., Grã¼nhagen, S., Gryaznevich, M. P., Guirlet, R., Gunn, J., Gupta, A., Guzdar, P., Hackett, L. J., Hacquin, S., Haist, B., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamilton, D. T., Han, H., Handley, R. C., Harding, S., Harling, J. D. W., Harting, D., Harvey, M. J., Haupt, T. D. V., Hawkes, N. C., Hawryluk, R., Hay, J. H., Hayashi, N., Haydon, P. W., Hayward, I. R., Hazel, S., Heesterman, P. J. L., Heidbrink, W., Heinola, K., Hellesen, C., Hellsten, T., Hemming, O. N., Hender, T. C., Henderson, M., Hennion, V., Hidalgo, C., Higashijima, S., Hill, J. W., Hill, M., Hill, K., Hillairet, J., Hillis, D., Hirai, T., Hitchin, M., Hobirk, J., Hogan, C., Hogben, C. H. A., Hogeweij, G. M. D., Hollingham, I. C., Holyaka, R., Homfray, D. A., Honeyands, G., Hong, S. H., Hong, J. H., Horã¡cek, J., Horn, B. A., Horton, A. R., Horton, L. D., Hotchin, S. P., Hough, M. R., Houlberg, W., Howell, D. F., Huber, A., Huddleston, T. M., Hudson, Z., Hughes, M., Hã¼hnerbein, M., Hume, C. C., Hunt, A. J., Hunter, C. L., Hutchinson, T. S., Huygen, S., Huysmans, G., Ide, S., Illescas, C., Imbeaux, F., Ivanova, D., Ivanova-Stanik, I., Ivings, E., Jachmich, S., Jackson, G., Jacquet, P., Jakubowska, K., James, P. V., Janky, F., Jã¤rvinen, A., Jednorog, S., Jenkins, I., Jennison, M. A. C., Jeskins, C., Jin Kwon, O., Joffrin, E., Johnson, M. F., Johnson, R., Johnson, T., Jolovic, D., Jonauskas, V., Jones, E. M., Jones, G., Jones, H. D., Jones, T. T. C., Jouvet, M., Jupã©n, C., Kachtchouk, I., Kaczmarczyk, J., Kallenbach, A., Kã¤llne, J., Kalupin, D., Kã¡lvin, S., Kamelander, G., Kamendje, R., Kamiya, K., Kappatou, A., Kasparek, W., Kasprowicz, G., Katramados, I., Kaveney, G., Kaye, A. S., Kear, M. J., Keeling, D. L., Kelliher, D., Kempenaars, M., Khilar, P., Khilkevich, E., Kidd, N. G., Kiisk, M., Kim, K. M., Kim, H., King, R. F., Kinna, D. J., Kiptily, V., Kirnev, G., Kirneva, N., Kirov, K., Kirschner, A., Kisielius, R., Kislov, D., Kiss, G., Kizane, G., Klein, A., Klepper, C., Klimov, N., Klix, A., Knaup, M., Kneuper, K., Kneupner, H., Knight, P. J., Knipe, S. J., Kocan, M., Koch, R., Kã¶chl, F., Kocsis, G., Koivuranta, S., Koppitz, T., Korotkov, A., Koskela, T., Koslowski, H. R., Kotov, V., Kovari, M. D., Kramer, G., Krasilnikov, A., Krasilnikov, V., Kraus, S., Kreter, A., Krieger, K., Kritz, A., Krivchenkov, Y., Kruezi, U., Krylov, S., Ksiazek, I., Kuhn, S., Kã¼hnlein, W., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kurowski, A., Kuteev, B., Kuyanov, A., Kyrytsya, V., La Haye, R., Laan, M., Labate, C., Lachichi, A., Laguardia, L., Lam, N., Lang, P., Large, M. T., Lasa, A., Lassiwe, I., Last, J. R., Lawson, K. D., Laxã¥back, M., Layne, R. A., Le Guern, F., Leblanc, B., Lee, S., Lee, J., Leggate, H. J., Lehnen, M., Leigheb, M., Lengar, I., Lennholm, M., Lerche, E., Lescure, C. N., Li, Y., Li Puma, A., Liang, Y., Likonen, J., Lin, Y., Lindholm, V., Linke, J., Linstead, S. A., Lipshultz, B., Litaudon, X., Litvak, A. G., Liu, Y., Loarer, T., Loarte, A., Lobel, R. C., Lomas, P. J., Long, F. D., Lã¶nnroth, J., Looker, D. J., Lopez, J., Lotte, Ph., Louche, F., Loughlin, M. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukanitsa, A., Lukin, A., Lungu, A. M., Lungu, C. P., Lyssoivan, A., Macheta, P., Mackenzie, A. S., Macrae, M., Maddaluno, G., Maddison, G. P., Madsen, J., Magesh, B., Maget, P., Maggi, C. F., Maier, H., Mailloux, J., Makkonen, T., Makowski, M., Malaquias, A., Manning, C. J., Mansfield, M., Manso, M. E., Mantica, P., Marcenko, N., Marchitti, M. A., Mardenfeld, M., Marechal, J. L., Marinelli, M., Marinucci, M., Marocco, D., Marren, C. A., Marsen, S., Martin, D., Martin, D. L., Martin, G., Martin, Y., MartÃn-SolÃs, J. R., Masaki, K., Masiello, A., Maszl, C., Matejcik, S., Matilal, A., Mattei, M., Matthews, G. F., Mattoo, S., Matveev, D., Maviglia, F., May, C. R., Mayer, M., Mayoral, M. L., Mazon, D., Mazzotta, C., Mazzucato, E., Mccarthy, P., Mcclements, K. G., Mccormick, K., Mccullen, P. A., Mccune, D., Mcdonald, D. C., Mcgregor, R., Mckivitt, J. P., Meakins, A., Medina, F., Meigs, A. G., Menard, M., Meneses, L., Menmuir, S., Merrigan, I. R., Mertens, Ph., Messiaen, A., Mã©szã¡ros, B., Meyer, H., Miano, G., Michling, R., Miele, M., Miettunen, J., Migliucci, P., Miller, A. G., Mills, S. F., Milnes, J. J., Min Kim, K., Mindham, T., Miorin, E., Mirizzi, F., Mirones, E., Mironov, M., Mitteau, R., Mlynã¡r, J., Mollard, P., Monakhov, I., Monier-Garbet, P., Mooney, R., Moreau, D., Moreau, Ph., Moreira, L., Morgan, A., Morgan, P. D., Morlock, C., Morris, A. W., Mort, G. L., Murakami, M., Murari, A., Mustata, I., Nabais, F., Nakano, T., Nardon, E., Nash, G., Naulin, V., Nave, M. F. F., Nazikian, R., Nedzelski, I., Negus, C. R., Neilson, J. D., Nemtsev, G., Neto, A., Neu, R., Neubauer, O., Newbert, G. J., Newman, M., Nicholls, K. J., Nicolai, A., Nicolas, L., Nieckchen, P., Nielsen, A. H., Nielsen, S. K., Nielsen, P., Nielson, G., Nieto, J., Nightingale, M. P. S., Nishijima, D., Noble, C., Nocente, M., Nordman, H., Norman, M., Nowak, S., Nunes, I., Oberkofler, M., Odstrcil, M., O'Gorman, T., Ohsako, T., Okabayashi, M., Olariu, S., Oleynikov, A., O'Mullane, M., Ongena, J., Orsitto, F., Oswuigwe, O. I., Ottaviani, M., Oyama, N., Pacella, D., Paget, K., Pajuste, E., Palazzo, S., Palã©nic, J., Pamela, J., Pamela, S., Pangione, L., Panin, A., Panja, S., Pankin, A., Pantea, A., Parail, V., Paris, P., Parisot, Th., Park, M., Parkin, A., Parsloe, A., Parsons, B. T., Pasqualotto, R., Pastor, P., Paterson, R., Paul, M. K., Peach, D., Pearce, R. J. H., Pearson, B. J., Pearson, I. J., Pedrick, L. C., Pedrosa, M. A., Pegourie, B., Pereira, R., Pereslavtsev, P., Perevezentsev, A., Perez Von Thun, Ch., Pericoli-Ridolfini, V., Perona, A., Perrot, Y., Peruzzo, S., Peschanyy, S., Petravich, G., Petrizzi, L., Petrov, V., Petrzilka, V., Philipps, V., Piccolo, F., Pietropaolo, A., Pillon, M., Pinches, S. D., Pinna, T., Pintsuk, G., Piovesan, P., Pironti, A., Pisano, F., Pitts, R., Plaum, B., Plyusnin, V., Polasik, M., Poli, F. M., Pomaro, N., Pompilian, O., Poncet, L., Pool, P. J., Popovichev, S., Porcelli, F., Porfiri, M. T., Portafaix, C., Pospieszczyk, A., Possnert, G., Pozniak, K., Pradhan, S., Pragash, R., Prajapati, V., Prestopino, G., Prior, P., Prokopowicz, R., Puiatti, M. E., Purahoo, K., Pustovitov, V., Pã¼tterich, Th., Püttmann-Kneupner, D., Quercia, A., Rachlew, E., Rademaker, R., Rafiq, T., Rainford, M. S. J., Ramogida, G., Rapp, J., Rasmussen, J. J., Rathod, K., Rattã¡, G., Ravera, G., Refy, D., Reichle, R., Reinelt, M., Reiser, D., Reiss, R., Reiter, D., Rendell, D., Reux, C., Rewoldt, G., Ribeiro, T. T., Riccardo, V., Richards, D., Rigollet, F., Rimini, F. G., Rios, L., Riva, M., Roberts, J. E. C., Robins, R. J., Robinson, D. S., Robinson, S. A., Robson, D. W., Roche, H., Rã¶dig, M., Rodionov, N., Rohde, V., Rolfe, A., Romanelli, M., Romano, A., Romero, J., Ronchi, E., Rosanvallon, S., Roux, Ch., Rowe, S., Rubel, M., Rubinacci, G., Ruiz, M., Ruset, C., Russell, M., Ruth, A., Ryc, L., Rydzy, A., Rzadkiewicz, J., Saarelma, S., Sabathier, F., Sabot, R., Sadakov, S., Sadvakassova, A., Sadykov, A., Sagar, P., Saibene, G., Saille, A., Saint-Laurent, F., Salewski, M., Salmi, A., Salzedas, F., Samm, U., Sanchez, P., Sanders, S., Sanders, S. G., Sandford, G., Sandland, K., Sandquist, P., Sands, D. E. G., Santala, M. I. K., Santra, P., Sartori, F., Sartori, R., Sauter, O., Savelyev, A., Savtchkov, A., Scales, S. C., Scarabosio, A., Schaefer, N., Schmidt, V., Schmidt, A., Schmitz, O., Schmuck, S., Schneider, M., Scholz, M., Schã¶pf, K., Schweer, B., Schweinzer, J., Seki, M., Semeraro, L., Semerok, A., Sergienko, G., Sertoli, M., Shannon, M. M. J., Sharapov, S. E., Shaw, S. R., Shevelev, A., Sieglin, B., Sievering, R., Silva, C. A., Simmons, P. A., Simonetto, A., Simpson, D., Sipilã¤, S. K., Sips, A. C. C., Sirã©n, P., Sirinelli, A., Sjã¶strand, H., Skopintsev, D., Slabkowska, K., Smith, P. G., Snipes, J., Snoj, L., Snyder, S., Soare, S., Solano, E. R., Soleto, A., Solomon, W., Soltane, C., Sonato, P., Sopplesa, A., Sorrentino, A., Sousa, J., Sowden, C. B. C., Sozzi, C., Spã¤h, P., Spelzini, T., Spence, J., Spineanu, F., Spuig, P., Stagg, R. D., Stamp, M. F., Stancalie, V., Stangeby, P., Stankiewicz, R., Stan-Sion, C., Starkey, D. E., Stead, M. J., Stejner, M., Stephen, A. V., Stephen, M., Stevens, A. L., Stokes, R. B., Stork, D., Stoyanov, D., Strachan, J., Strand, P., Stransky, M., Strauss, D., Strintzi, D., Studholme, W., Su Na, Y., Subba, F., Summers, H. P., Sun, Y., Surdu-Bob, C., Surrey, E., Sutton, D. J., Svensson, J., Swain, D., Syme, B. D., Symonds, I. D., Szabolics, T., Szepesi, T., Szydlowski, A., Tabares, F., Takalo, V., Takenaga, H., Tala, T., Talbot, A. R., Taliercio, C., Tame, C., Tardocchi, M., Taroni, L., Telesca, G., Terra, A., Terrington, A. O., Testa, D., Theis, J. M., Thomas, J. D., Thomas, P. D., Thomas, P. R., Thompson, V. K., Thomser, C., Thyagaraja, A., Tigwell, P. A., Tiseanu, I., Tivey, R., Todd, J. M., Todd, T. N., Tokar, M. Z., Tosti, S., Trabuc, P., Travere, J. M., Trimble, P., Trkov, A., Trukhina, E., Tsalas, M., Tsitrone, E., Tskhakaya jun, D., Tudisco, O., Tugarinov, S., Turner, M. M., Tyrrell, S. G. J., Umeda, N., Unterberg, B., Urano, H., Urquhart, A. J., Uytdenhouwen, I., Vaccaro, A., Vadgama, A. P., Vagliasindi, G., Valcarcel, D., Valisa, M., Vallory, J., Valovic, M., Van Eester, D., Van Milligen, B., Van Rooij, G. J., Varandas, C. A. F., Vartanian, S., Vasava, K., Vdovin, V., Vega, J., Verdoolaege, G., Verger, J. M., Vermare, L., Verona, C., Versloot, Th., Vervier, M., Vicente, J., Villari, S., Villedieu, E., Villone, F., Vince, J. E., Vine, G. J., Vinyar, I., Viola, B., Vitale, E., Vitelli, R., Vitins, A., Vlad, M., Voitsekhovitch, I., Vrancken, M., Vulliez, K., Waldon, C. W. F., Walker, M., Walsh, M. J., Waterhouse, J., Watkins, M. L., Watson, M. J., Wauters, T., Way, M. W., Webb, C. R., Weiland, J., Weisen, H., Weiszflog, M., Wenninger, R., West, A. T., Weulersse, J. M., Wheatley, M. R., Whiteford, A. D., Whitehead, A. M., Whitehurst, A. G., Widdowson, A. M., Wiegmann, C., Wiesen, S., Wilson, A., Wilson, D., Wilson, D. J., Wilson, H. R., Wischmeier, M., Witts, D. M., Wolf, R. C., Wolowski, J., Woscov, P., Wright, J., G. S., Xu, Yavorskij, V., Yerashok, V., Yoo, M., Yorkshades, J., Young, C., Young, D., Young, I. D., Yuhong, X., Yun, S., Zabeo, L., Zabolotny, W., Zaccarian, L., Zagorski, R., Zaitsev, F. S., Zakharov, L., Zanino, R., Zaroschi, V., Zastrow, K. D., Zatz, I., Zefran, B., Zeidner, W., Zerbini, M., Zhang, T., Zhitlukin, A., Zhu, Y., Zimmermann, O., Zoita, V., Zoletnik, S., Zwingman, W., Romanelli, F, Abel, I, Afanesyev, V, Aftanas, M, Agarici, G, Aggarwal, K, Aho Mantila, L, Ahonen, E, Aints, M, Airila, M, Akers, R, Alarcon, T, Albanese, R, Alexeev, A, Alfier, A, Allan, P, Almaviva, S, Alonso, A, Alper, B, Altmann, H, Alves, D, Ambrosino, G, Amosov, V, Andersson, F, Sunden, E, Andreev, V, Andrew, Y, Angelone, M, Anghel, M, Anghel, A, Angioni, C, Apruzzese, G, Arcis, N, Arena, P, Argouarch, A, Ariola, M, Armitano, A, Arnoux, G, Arshad, S, Artaserse, G, Artaud, J, Ash, A, Asp, E, Asunta, O, Atanasiu, C, Atkins, G, Avotina, L, Axton, M, Ayres, C, Baciero, A, Bailescu, V, Baiocchi, B, Baker, R, Balboa, I, Balden, M, Balorin, C, Balshaw, N, Banks, J, Baranov, Y, Barbier, D, Barlow, I, Barnard, M, Barnsley, R, Barrena, L, Barrera, L, Baruzzo, M, Basiuk, V, Bateman, G, Batistoni, P, Baumgarten, N, Baylor, L, Bazylev, B, Beaumont, P, Beausang, K, Becoulet, M, Bekris, N, Beldishevski, M, Bell, A, Belli, F, Bellinger, M, Bellizio, T, Belo, P, Belonohy, E, Bennett, P, Benterman, N, Berger By, G, Bergsaker, H, Berk, H, Bernardo, J, Bernert, M, Bertrand, B, Beurskens, M, Bieg, B, Bienkowska, B, Biewer, T, Bigi, M, Bilkova, P, Bin, W, Bird, J, Bizarro, J, Bjorkas, C, Blackman, T, Blanchard, P, Blanco, E, Blum, J, Bobkov, V, Boboc, A, Boilson, D, Bolshakova, I, Bolzonella, T, Boncagni, L, Bonheure, G, Bonnin, X, Borba, D, Borthwick, A, Botrugno, A, Boulbe, C, Bouquey, F, Bourdelle, C, Von, B, Bowden, M, Boyce, T, Boyer, H, Bozhenkov, A, Brade, R, Bradshaw, J, Braet, J, Braic, V, Braithwaite, G, Brault, C, Breizman, B, Bremond, S, Brennan, P, Brett, A, Breue, J, Brezinsek, S, Bright, M, Briscoe, F, Brix, M, Brombin, M, Brown, B, Brown, D, Brzozowski, J, Bucalossi, J, Buckley, M, Budd, T, Budny, R, Bunting, P, Buratti, P, Burcea, G, Burckhart, A, Butcher, P, Buttery, R, Cahyna, P, Calabro, G, Callaghan, C, Caminade, J, Camp, P, Campling, D, Caniello, R, Canik, J, Cannas, B, Capel, A, Carannante, G, Card, P, Cardinali, A, Carlstrom, T, Carman, P, Carralero, D, Carraro, L, Carter, T, Carvalho, B, Carvalho, I, Carvalho, P, Casati, A, Castaldo, C, Caughman, J, Cavazzana, R, Cavinato, M, Cecconello, M, Cecil, E, Cecil, F, Cenedese, A, Centioli, C, Cesario, R, Challis, C, Chandler, M, Chang, C, Chankin, A, Chapman, I, Chektybayev, B, Chernyshova, M, Child, D, Chiru, P, Chitarin, G, Chugonov, I, Ciric, D, Clairet, F, Clarke, R, Clay, R, Clever, M, Coad, J, Coates, P, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Cole, M, Collins, S, Combs, S, Compan, J, Conboy, J, Conroy, S, Cook, N, Cook, S, Coombs, D, Cooper, S, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Counsell, G, Courtois, X, Cox, M, Craciunescu, T, Cramp, S, Crisanti, F, Croci, G, Croft, O, Crombe, K, Crowley, B, Cruz, N, Cseh, G, Cupido, L, Curuia, M, Cusack, R, Czarnecka, A, Czarski, T, Dalley, S, Daly, E, Dalziel, A, Daniel, R, Darrow, D, David, O, Davies, N, Davies, W, Davies, J, Day, I, Day, C, De, A, De, B, De, L, De, P, De, T, De, V, De Angelis, R, Degli, A, Delabie, E, del Castillo Negrete, D, Delpech, L, Denisov, G, Denyer, A, Denyer, R, Devaux, S, Devynck, P, Di, M, Di, P, Dirken, P, Dittmar, T, Dnestrovskiy, A, Dodt, D, Doerner, R, Doldatov, S, Dominiczak, K, Dooley, P, Dorling, S, Douai, D, Down, A, Doyle, P, Drake, J, Dreischuh, T, Drozdov, V, Dumortier, P, Dunai, D, Duran, I, Durodie, F, Dutta, P, Dux, R, Dylst, K, Eaton, R, Edlington, T, Edwards, A, Edwards, D, Edwards, P, Eich, T, Ekedahl, A, Elevant, T, Ellingboe, B, Elsmore, C, Emmoth, B, Erdei, G, Ericsson, G, Eriksson, L, Eriksson, A, Esposito, B, Esser, H, Estrada, T, Evangelidis, E, Evans, G, Ewart, G, Ewers, D, Falchetto, G, Falie, D, Fanthome, J, Farthing, J, Fasoli, A, Faugeras, B, Fedorczak, N, Felton, R, Fenzi, C, Fernades, A, Fernandes, H, Ferreira, J, Ferron, J, Fessey, J, Figini, L, Figueiredo, J, Figueiredo, A, Finburg, P, Finken, K, Fischer, U, Fitzgerald, N, Flanagan, J, Fleming, C, Forbes, A, Ford, O, Formisano, A, Fraboulet, D, Francis, R, Frassinetti, L, Fresa, R, Friconneau, J, Frigione, D, Fullard, K, Fundamenski, W, Palumbo, M, Gal, K, Gao, X, Garavaglia, S, Garbet, X, Garcia, J, Munoz, M, Gardner, W, Garibaldi, P, Garnier, D, Garzotti, L, Johnson, M, Gaudio, P, Gauthier, E, Gaze, J, Gear, D, Gedney, J, Gee, S, Gelfusa, M, Genangeli, E, Gerasimov, S, Geraud, A, Gerbaud, T, Gherendi, M, Ghirelli, N, Giacalone, J, Giacomelli, L, Gibson, C, Gil, C, Gilligan, S, Gimblett, C, Gin, D, Giovannozzi, E, Giroud, C, Giruzzi, G, Godwin, J, Goff, J, Gohil, P, Gojska, A, Goloborod'Ko, V, Goncalves, B, Goniche, M, Gonzales, S, Goodyear, A, Gorelenkov, N, Gorini, G, Goulding, R, Graham, B, Graham, D, Graham, M, Graves, J, Green, N, Greuner, H, Grigore, E, Griph, F, Grisolia, C, Gros, G, Groth, M, Grunhagen, S, Gryaznevich, M, Guirlet, R, Gunn, J, Gupta, A, Guzdar, P, Hackett, L, Hacquin, S, Haist, B, Hakola, A, Halitovs, M, Hall, S, Hamilton, D, Han, H, Handley, R, Harding, S, Harling, J, Harting, D, Harvey, M, Haupt, T, Hawkes, N, Hawryluk, R, Hay, J, Hayashi, N, Haydon, P, Hayward, I, Hazel, S, Heesterman, P, Heidbrink, W, Heinola, K, Hellesen, C, Hellsten, T, Hemming, O, Hender, T, Henderson, M, Hennion, V, Hidalgo, C, Higashijima, S, Hill, J, Hill, M, Hill, K, Hillairet, J, Hillis, D, Hirai, T, Hitchin, M, Hobirk, J, Hogan, C, Hogben, C, Hogeweij, G, Hollingham, I, Holyaka, R, Homfray, D, Honeyands, G, Hong, S, Hong, J, Horacek, J, Horn, B, Horton, A, Horton, L, Hotchin, S, Hough, M, Houlberg, W, Howell, D, Huber, A, Huddleston, T, Hudson, Z, Hughes, M, Huehnerbein, M, Hume, C, Hunt, A, Hunter, C, Hutchinson, T, Huygen, S, Huysmans, G, Ide, S, Illescas, C, Imbeaux, F, Ivanova, D, Ivanova Stanik, I, Ivings, E, Jachmich, S, Jackson, G, Jacquet, P, Jakubowska, K, James, P, Janky, F, Jaervinen, A, Jednorog, S, Jenkins, I, Jennison, M, Jeskins, C, Kwon, O, Joffrin, E, Johnson, R, Johnson, T, Jolovic, D, Jonauskas, V, Jones, E, Jones, G, Jones, H, Jones, T, Jouvet, M, Jupen, C, Kachtchouk, I, Kaczmarczyk, J, Kallenbach, A, Kaellne, J, Kalupin, D, Kalvin, S, Kamelander, G, Kamendje, R, Kamiya, K, Kappatou, A, Kasparek, W, Kasprowicz, G, Katramados, I, Kaveney, G, Kaye, A, Kear, M, Keeling, D, Kelliher, D, Kempenaars, M, Khilar, P, Khilkevich, E, Kidd, N, Kiisk, M, Kim, K, Kim, H, King, R, Kinna, D, Kiptily, V, Kirnev, G, Kirneva, N, Kirov, K, Kirschner, A, Kisielius, R, Kislov, D, Kiss, G, Kizane, G, Klein, A, Klepper, C, Klimov, N, Klix, A, Knaup, M, Kneuper, K, Kneupner, H, Knight, P, Knipe, S, Kocan, M, Koch, R, Kochl, F, Kocsis, G, Koivuranta, S, Koppitz, T, Korotkov, A, Koskela, T, Koslowski, H, Kotov, V, Kovari, M, Kramer, G, Krasilnikov, A, Krasilnikov, V, Kraus, S, Kreter, A, Krieger, K, Kritz, A, Krivchenkov, Y, Kruezi, U, Krylov, S, Ksiazek, I, Kuhn, S, Kuhnlein, W, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kurowski, A, Kuteev, B, Kuyanov, A, Kyrytsya, V, La, H, Laan, M, Labate, C, Lachichi, A, Laguardia, L, Lam, N, Lang, P, Large, M, Lasa, A, Lassiwe, I, Last, J, Lawson, K, Laxaback, M, Layne, R, Le, G, Leblanc, B, Lee, S, Lee, J, Leggate, H, Lehnen, M, Leigheb, M, Lengar, I, Lennholm, M, Lerche, E, Lescure, C, Li, Y, Li, P, Liang, Y, Likonen, J, Lin, Y, Lindholm, V, Linke, J, Linstead, S, Lipshultz, B, Litaudon, X, Litvak, A, Liu, Y, Loarer, T, Loarte, A, Lobel, R, Lomas, P, Long, F, Lonnroth, J, Looker, D, Lopez, J, Lotte, P, Louche, F, Loughlin, M, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukanitsa, A, Lukin, A, Lungu, A, Lungu, C, Lyssoivan, A, Macheta, P, Mackenzie, A, Macrae, M, Maddaluno, G, Maddison, G, Madsen, J, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makowski, M, Malaquias, A, Manning, C, Mansfield, M, Manso, M, Mantica, P, Marcenko, N, Marchitti, M, Mardenfeld, M, Marechal, J, Marinelli, M, Marinucci, M, Marocco, D, Marren, C, Marsen, S, Martin, D, Martin, G, Martin, Y, Martin Solis, J, Masaki, K, Masiello, A, Maszl, C, Matejcik, S, Matilal, A, Mattei, M, Matthews, G, Mattoo, S, Matveev, D, Maviglia, F, May, C, Mayer, M, Mayoral, M, Mazon, D, Mazzotta, C, Mazzucato, E, Mccarthy, P, Mcclements, K, Mccormick, K, Mccullen, P, Mccune, D, Mcdonald, D, Mcgregor, R, Mckivitt, J, Meakins, A, Medina, F, Meigs, A, Menard, M, Meneses, L, Menmuir, S, Merrigan, I, Mertens, P, Messiaen, A, Meszaros, B, Meyer, H, Miano, G, Michling, R, Miele, M, Miettunen, J, Migliucci, P, Miller, A, Mills, S, Milnes, J, Mindham, T, Miorin, E, Mirizzi, F, Mirones, E, Mironov, M, Mitteau, R, Mlynar, J, Mollard, P, Monakhov, I, Monier Garbet, P, Mooney, R, Moreau, D, Moreau, P, Moreira, L, Morgan, A, Morgan, P, Morlock, C, Morris, A, Mort, G, Murakami, M, Murari, A, Mustata, I, Nabais, F, Nakano, T, Nardon, E, Nash, G, Naulin, V, Nave, M, Nazikian, R, Nedzelski, I, Negus, C, Neilson, J, Nemtsev, G, Neto, A, Neu, R, Neubauer, O, Newbert, G, Newman, M, Nicholls, K, Nicolai, A, Nicolas, L, Nieckchen, P, Nielsen, A, Nielsen, S, Nielsen, P, Nielsen, G, Nieto, J, Nightingale, M, Nishijima, D, Noble, C, Nocente, M, Nordman, H, Norman, M, Nowak, S, Nunes, I, Oberkofler, M, Odstrcil, M, O'Gorman, T, Ohsako, T, Okabayashi, M, Olariu, S, Oleynikov, A, O'Mullane, M, Ongena, J, Orsitto, F, Oswuigwe, O, Ottaviani, M, Oyama, N, Pacella, D, Paget, K, Pajuste, E, Palazzo, S, Palenic, J, Pamela, J, Pamela, S, Pangione, L, Panin, A, Panja, S, Pankin, A, Pantea, A, Parail, V, Paris, P, Parisot, T, Park, M, Parkin, A, Parsloe, A, Parsons, B, Pasqualotto, R, Pastor, P, Paterson, R, Paul, M, Peach, D, Pearce, R, Pearson, B, Pearson, I, Pedrick, L, Pedrosa, M, Pegourie, B, Pereira, R, Pereslavtsev, P, Perevezentsev, A, Von, T, Pericoli Ridolfini, V, Perona, A, Perrot, Y, Peruzzo, S, Peschanyy, S, Petravich, G, Petrizzi, L, Petrov, V, Petrzilka, V, Philipps, V, Piccolo, F, Pietropaolo, A, Pillon, M, Pinches, S, Pinna, T, Pintsuk, G, Piovesan, P, Pironti, A, Pisano, F, Pitts, R, Plaum, B, Plyusnin, V, Polasik, M, Poli, F, Pomaro, N, Pompilian, O, Poncet, L, Pool, P, Popovichev, S, Porcelli, F, Porfiri, M, Portafaix, C, Pospieszczyk, A, Possnert, G, Pozniak, K, Pradhan, S, Pragash, R, Prajapati, V, Prestopino, G, Prior, P, Prokopowicz, R, Puiatti, M, Purahoo, K, Pustovitov, V, Putterich, T, Puttmann Kneupner, D, Quercia, A, Rachlew, E, Rademaker, R, Rafiq, T, Rainford, M, Ramogida, G, Rapp, J, Rasmussen, J, Rathod, K, Ratta, G, Ravera, G, Refy, D, Reichle, R, Reinelt, M, Reiser, D, Reiss, R, Reiter, D, Rendell, D, Reux, C, Rewoldt, G, Ribeiro, T, Riccardo, V, Richards, D, Rigollet, F, Rimini, F, Rios, L, Riva, M, Roberts, J, Robins, R, Robinson, D, Robinson, S, Robson, D, Roche, H, Roedig, M, Rodionov, N, Rohde, V, Rolfe, A, Romanelli, M, Romano, A, Romero, J, Ronchi, E, Rosanvallon, S, Roux, C, Rowe, S, Rubel, M, Rubinacci, G, Ruiz, M, Ruset, C, Russell, M, Ruth, A, Ryc, L, Rydzy, A, Rzadkiewicz, J, Saarelma, S, Sabathier, F, Sabot, R, Sadakov, S, Sadvakassova, A, Sadykov, A, Sagar, P, Saibene, G, Saille, A, Saint Laurent, F, Salewski, M, Salmi, A, Salzedas, F, Samm, U, Sanchez, P, Sanders, S, Sandford, G, Sandland, K, Sandquist, P, Sands, D, Santala, M, Santra, P, Sartori, F, Sartori, R, Sauter, O, Savelyev, A, Savtchkov, A, Scales, S, Scarabosio, A, Schaefer, N, Schmidt, V, Schmidt, A, Schmitz, O, Schmuck, S, Schneider, M, Scholz, M, Schoepf, K, Schweer, B, Schweinzer, J, Seki, M, Semeraro, L, Semerok, A, Sergienko, G, Sertoli, M, Shannon, M, Sharapov, S, Shaw, S, Shevelev, A, Sieglin, B, Sievering, R, Silva, C, Simmons, P, Simonetto, A, Simpson, D, Sipilae, S, Sips, A, Siren, P, Sirinelli, A, Sjoestrand, H, Skopintsev, D, Slabkowska, K, Smith, P, Snipes, J, Snoj, L, Snyder, S, Soare, S, Solano, E, Soleto, A, Solomon, W, Soltane, C, Sonato, P, Sopplesa, A, Sorrentino, A, Sousa, J, Sowden, C, Sozzi, C, Spaeh, P, Spelzini, T, Spence, J, Spineanu, F, Spuig, P, Stagg, R, Stamp, M, Stancalie, V, Stangeby, P, Stankiewicz, R, Stan Sion, C, Starkey, D, Stead, M, Stejner, M, Stephen, A, Stephen, M, Stevens, A, Stokes, R, Stork, D, Stoyanov, D, Strachan, J, Strand, P, Stransky, M, Strauss, D, Strintzi, D, Studholme, W, Na, Y, Subba, F, Summers, H, Sun, Y, Surdu Bob, C, Surrey, E, Sutton, D, Svensson, J, Swain, D, Syme, B, Symonds, I, Szabolics, T, Szepesi, T, Szydlowski, A, Tabares, F, Takalo, V, Takenaga, H, Tala, T, Talbot, A, Taliercio, C, Tame, C, Tardocchi, M, Taroni, L, Telesca, G, Terra, A, Terrington, A, Testa, D, Theis, J, Thomas, J, Thomas, P, Thompson, V, Thomser, C, Thyagaraja, A, Tigwell, P, Tiseanu, I, Tivey, R, Todd, J, Todd, T, Tokar, M, Tosti, S, Trabuc, P, Travere, J, Trimble, P, Trkov, A, Trukhina, E, Tsalas, M, Tsitrone, E, Jun, D, Tudisco, O, Tugarinov, S, Turner, M, Tyrrell, S, Umeda, N, Unterberg, B, Urano, H, Urquhart, A, Uytdenhouwen, I, Vaccaro, A, Vadgama, A, Vagliasindi, G, Valcarcel, D, Valisa, M, Vallory, J, Valovic, M, Van, E, Van, M, Van, R, Varandas, C, Vartanian, S, Vasava, K, Vdovin, V, Vega, J, Verdoolaege, G, Verger, J, Vermare, L, Verona, C, Versloot, T, Vervier, M, Vicente, J, Villari, S, Villedieu, E, Villone, F, Vince, J, Vine, G, Vinyar, I, Viola, B, Vitale, E, Vitelli, R, Vitins, A, Vlad, M, Voitsekhovitch, I, Vrancken, M, Vulliez, K, Waldon, C, Walker, M, Walsh, M, Waterhouse, J, Watkins, M, Watson, M, Wauters, T, Way, M, Webb, C, Weiland, J, Weisen, H, Weiszflog, M, Wenninger, R, West, A, Weulersse, J, Wheatley, M, Whiteford, A, Whitehead, A, Whitehurst, A, Widdowson, A, Wiegmann, C, Wiesen, S, Wilson, A, Wilson, D, Wilson, H, Wischmeier, M, Witts, D, Wolf, R, Wolowski, J, Woscov, P, Wright, J, Xu, G, Yavorskij, V, Yerashok, V, Yoo, M, Yorkshades, J, Young, C, Young, D, Young, I, Yuhong, X, Yun, S, Zabeo, L, Zabolotny, W, Zaccarian, L, Zagorski, R, Zaitsev, F, Zakharov, L, Zanino, R, Zaroschi, V, Zastrow, K, Zatz, I, Zefran, B, Zeidner, W, Zerbini, M, Zhang, T, Zhitlukin, A, Zhu, Y, Zimmermann, O, Zoita, V, Zoletnik, S, Zwingman, W, Control Systems Technology, Science and Technology of Nuclear Fusion, Miano, Giovanni, Coccorese, Vincenzo, Albanese, Raffaele, Rubinacci, Guglielmo, DE TOMMASI, Gianmaria, Faculdade de Engenharia, Romanelli, F., Abel, I., Afanesyev, V., Aftanas, M., Agarici, G., Aggarwal, K. M., Aho Mantila, L., Ahonen, E., Aints, M., Airila, M., Akers, R., Alarcon, T. h., Albanese, R., Alexeev, A., Alfier, A., Allan, P., Almaviva, S., Alonso, A., Alper, B., Altmann, H., Alves, D., Ambrosino, G., Amosov, V., Andersson, F., Sunden E., Andersson, Andreev, V., Andrew, Y., Angelone, M., Anghel, M., Anghel, A., Angioni, C., Apruzzese, G., Arcis, N., Arena, P., Argouarch, A., Ariola, M., Armitano, A., Arnoux, G., Arshad, S., Artaserse, G., Artaud, J. F., Ash, A., Asp, E., Asunta, O., Atanasiu, C. V., Atkins, G., Avotina, L., Axton, M. D., Ayres, C., Baciero, A., Bailescu, V., Baiocchi, B., Baker, R. A., Balboa, I., Balden, M., Balorin, C., Balshaw, N., Banks, J. W., Baranov, Y. F., Barbier, D., Barlow, I. L., Barnard, M. A., Barnsley, R., Barrena, L., Barrera, L., Baruzzo, M., Basiuk, V., Bateman, G., Batistoni, P., Baumgarten, N., Baylor, L., Bazylev, B., Beaumont, P. S., Beausang, K., Becoulet, M., Bekris, N., Beldishevski, M., Bell, A. C., Belli, F., Bellinger, M., Bellizio, T., Belo, P. S. A., Belonohy, E., Bennett, P. E., Benterman, N. A., Berger By, G., Bergsaker, H., Berk, H., Bernardo, J., Bernert, M., Bertrand, B., Beurskens, M. N. A., Bieg, B., Bienkowska, B., Biewer, T. M., Bigi, M., Bilkova, P., Bin, W., Bird, J., Bizarro, J., Bjorkas, C., Blackman, T. R., Blanchard, P., Blanco, E., Blum, J., Bobkov, V., Boboc, A., Boilson, D., Bolshakova, I., Bolzonella, T., Boncagni, L., Bonheure, G., Bonnin, X., Borba, D., Borthwick, A., Botrugno, A., Boulbe, C., Bouquey, F., Bourdelle, C., Von Bovert, K., Bowden, M., Boyce, T., Boyer, H. J., Bozhenkov, A., Brade, R. J., Bradshaw, J. M. A., Braet, J., Braic, V., Braithwaite, G. C., Brault, C., Breizman, B., Bremond, S., Brennan, P. D., Brett, A., Breue, J., Brezinsek, S., Bright, M. D. J., Briscoe, F., Brix, M., Brombin, M., Brown, B. C., Brown, D. P. D., Brzozowski, J., Bucalossi, J., Buckley, M. A., Budd, T., Budny, R. V., Bunting, P., Buratti, P., Burcea, G., Burckhart, A., Butcher, P. R., Buttery, R. J., Cahyna, P., Calabro, G., Callaghan, C. P., Caminade, J. P., Camp, P. G., Campling, D. C., Caniello, R., Canik, J., Cannas, B., Capel, A. J., Carannante, G., Card, P. J., Cardinali, A., Carlstrom, T., Carman, P., Carralero, D., Carraro, L., Carter, T., Carvalho, B. B., Carvalho, I., Carvalho, P., Casati, A., Castaldo, C., Caughman, J., Cavazzana, R., Cavinato, M., Cecconello, M., Cecil, E., Cecil, F. E., Cenedese, A., Centioli, C., Cesario, R., Challis, C. D., Chandler, M., Chang, C., Chankin, A., Chapman, I. T., Chektybayev, B., Chernyshova, M., Child, D. J., Chiru, P., Chitarin, G., Chugonov, I., Ciric, D., Clairet, F., Clarke, R. H., Clay, R., Clever, M., Coad, J. P., Coates, P. A., Cocilovo, V., Coda, S., Coelho, R., Coenen, J., Coffey, I., Colas, L., Cole, M., Collins, S., Combs, S., Compan, J., Conboy, J. E., Conroy, S., Cook, N., Cook, S. P., Coombs, D., Cooper, S. R., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Counsell, G. F., Courtois, X., Cox, M., Craciunescu, T., Cramp, S., Crisanti, F., Croci, G., Croft, O., Crombe, K., Crowley, B. J., Cruz, N., Cseh, G., Cupido, L., Curuia, M., Cusack, R. A., Czarnecka, A., Czarski, T., Dalley, S., Daly, E. T., Dalziel, A., Daniel, R., Darrow, D., David, O., Davies, N., Davies, W., Davies, J. J., Day, I. E., Day, C., De Angelis, R., de Arcas, G., de Baar, M. R., de la Cal, E., de la Luna, E., de Pablos, J. L., De Tommasi, G., de Vries, P. C., Degli Agostini, F., Delabie, E., del Castillo Negrete, D., Delpech, L., Denisov, G., Denyer, A. J., Denyer, R. F., Devaux, S., Devynck, P., Di Matteo, L., Di Pace, L., Dirken, P. J., Dittmar, T., Dnestrovskiy, A., Dodt, D., Doerner, R., Doldatov, S., Dominiczak, K., Dooley, P., Dorling, S. E., Douai, D., Down, A. P., Doyle, P. T., Drake, J. R., Dreischuh, T., Drozdov, V., Dumortier, P., Dunai, D., Duran, I., Durodie, F., Dutta, P., Dux, R., Dylst, K., Eaton, R., Edlington, T., Edwards, A. M., Edwards, D. T., Edwards, P. K., Eich, T. h., Ekedahl, A., Elevant, T., Ellingboe, B., Elsmore, C. G., Emmoth, B., Erdei, G., Ericsson, G., Eriksson, L. G., Eriksson, A., Esposito, B., Esser, H. G., Estrada, T., Evangelidis, E. A., Evans, G. E., Ewart, G. D., Ewers, D. T., Falchetto, G., Falie, D., Fanthome, J. G. A., Farthing, J. W., Fasoli, A., Faugeras, B., Fedorczak, N., Felton, R. C., Fenzi, C., Fernades, A., Fernandes, H., Ferreira, J. A., Ferreira, J., Ferron, J., Fessey, J. A., Figini, L., Figueiredo, J., Figueiredo, A., Finburg, P., Finken, K. H., Fischer, U., Fitzgerald, N., Flanagan, J., Fleming, C., Forbes, A. D., Ford, O., Formisano, A., Fraboulet, D., Francis, R. J., Frassinetti, L., Fresa, R., Friconneau, J. P., Frigione, D., Fullard, K., Fundamenski, W., Palumbo M., Furno, Gal, K., Gao, X., Garavaglia, S., Garbet, X., Garcia, J., Munoz M., Garcia, Gardner, W., Garibaldi, P., Garnier, D., Garzotti, L., Johnson M., Gatu, Gaudio, P., Gauthier, E., Gaze, J. W., Gear, D. F., Gedney, J., Gee, S. J., Gelfusa, M., Genangeli, E., Gerasimov, S., Geraud, A., Gerbaud, T., Gherendi, M., Ghirelli, N., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Gil, C., Gilligan, S. J., Gimblett, C. G., Gin, D., Giovannozzi, E., Giroud, C., Giruzzi, G., Godwin, J., Goff, J. K., Gohil, P., Gojska, A., Goloborod'Ko, V., Goncalves, B., Goniche, M., Gonzales, S., de Vicente S. M., Gonzalez, Goodyear, A., Gorelenkov, N., Gorini, G., Goulding, R., Graham, B., Graham, D., Graham, M. E., Graves, J., Green, N. R., Greuner, H., Grigore, E., Griph, F. S., Grisolia, C., Gros, G., Groth, M., Grunhagen, S., Gryaznevich, M. P., Guirlet, R., Gunn, J., Gupta, A., Guzdar, P., Hackett, L. J., Hacquin, S., Haist, B., Hakola, A., Halitovs, M., Hall, S. J., Cook S. P., Hallworth, Hamilton, D. T., Han, H., Handley, R. C., Harding, S., Harling, J. D. W., Harting, D., Harvey, M. J., Haupt, T. D. V., Hawkes, N. C., Hawryluk, R., Hay, J. H., Hayashi, N., Haydon, P. W., Hayward, I. R., Hazel, S., Heesterman, P. J. L., Heidbrink, W., Heinola, K., Hellesen, C., Hellsten, T., Hemming, O. N., Hender, T. C., Henderson, M., Hennion, V., Hidalgo, C., Higashijima, S., Hill, J. W., Hill, M., Hill, K., Hillairet, J., Hillis, D., Hirai, T., Hitchin, M., Hobirk, J., Hogan, C., Hogben, C. H. A., Hogeweij, G. M. D., Hollingham, I. C., Holyaka, R., Homfray, D. A., Honeyands, G., Hong, S. H., Hong, J. H., Horacek, J., Horn, B. A., Horton, A. R., Horton, L. D., Hotchin, S. P., Hough, M. R., Houlberg, W., Howell, D. F., Huber, A., Huddleston, T. M., Hudson, Z., Hughes, M., Huehnerbein, M., Hume, C. C., Hunt, A. J., Hunter, C. L., Hutchinson, T. S., Huygen, S., Huysmans, G., Ide, S., Illescas, C., Imbeaux, F., Ivanova, D., Ivanova Stanik, I., Ivings, E., Jachmich, S., Jackson, G., Jacquet, P., Jakubowska, K., James, P. V., Janky, F., Jaervinen, A., Jednorog, S., Jenkins, I., Jennison, M. A. C., Jeskins, C., Kwon O., Jin, Joffrin, E., Johnson, M. F., Johnson, R., Johnson, T., Jolovic, D., Jonauskas, V., Jones, E. M., Jones, G., Jones, H. D., Jones, T. T. C., Jouvet, M., Jupen, C., Kachtchouk, I., Kaczmarczyk, J., Kallenbach, A., Kaellne, J., Kalupin, D., Kalvin, S., Kamelander, G., Kamendje, R., Kamiya, K., Kappatou, A., Kasparek, W., Kasprowicz, G., Katramados, I., Kaveney, G., Kaye, A. S., Kear, M. J., Keeling, D. L., Kelliher, D., Kempenaars, M., Khilar, P., Khilkevich, E., Kidd, N. G., Kiisk, M., Kim, K. M., Kim, H., King, R. F., Kinna, D. J., Kiptily, V., Kirnev, G., Kirneva, N., Kirov, K., Kirschner, A., Kisielius, R., Kislov, D., Kiss, G., Kizane, G., Klein, A., Klepper, C., Klimov, N., Klix, A., Knaup, M., Kneuper, K., Kneupner, H., Knight, P. J., Knipe, S. J., Kocan, M., Koch, R., Kochl, F., Kocsis, G., Koivuranta, S., Koppitz, T., Korotkov, A., Koskela, T., Koslowski, H. R., Kotov, V., Kovari, M. D., Kramer, G., Krasilnikov, A., Krasilnikov, V., Kraus, S., Kreter, A., Krieger, K., Kritz, A., Krivchenkov, Y., Kruezi, U., Krylov, S., Ksiazek, I., Kuhn, S., Kuhnlein, W., Kukushkin, A., Kundu, A., Kurki Suonio, T., Kurowski, A., Kuteev, B., Kuyanov, A., Kyrytsya, V., La Haye, R., Laan, M., Labate, C., Lachichi, A., Laguardia, L., Lam, N., Lang, P., Large, M. T., Lasa, A., Lassiwe, I., Last, J. R., Lawson, K. D., Laxaback, M., Layne, R. A., Le Guern, F., Leblanc, B., Lee, S., Lee, J., Leggate, H. J., Lehnen, M., Leigheb, M., Lengar, I., Lennholm, M., Lerche, E., Lescure, C. N., Li, Y., Li Puma, A., Liang, Y., Likonen, J., Lin, Y., Lindholm, V., Linke, J., Linstead, S. A., Lipshultz, B., Litaudon, X., Litvak, A. G., Liu, Y., Loarer, T., Loarte, A., Lobel, R. C., Lomas, P. J., Long, F. D., Lonnroth, J., Looker, D. J., Lopez, J., Lotte, P. h., Louche, F., Loughlin, M. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukanitsa, A., Lukin, A., Lungu, A. M., Lungu, C. P., Lyssoivan, A., Macheta, P., Mackenzie, A. S., Macrae, M., Maddaluno, G., Maddison, G. P., Madsen, J., Magesh, B., Maget, P., Maggi, C. F., Maier, H., Mailloux, J., Makkonen, T., Makowski, M., Malaquias, A., Manning, C. J., Mansfield, M., Manso, M. E., Mantica, P., Marcenko, N., Marchitti, M. A., Mardenfeld, M., Marechal, J. L., Marinelli, M., Marinucci, M., Marocco, D., Marren, C. A., Marsen, S., Martin, D., Martin, D. L., Martin, G., Martin, Y., Martin Solis, J. R., Masaki, K., Masiello, A., Maszl, C., Matejcik, S., Matilal, A., Mattei, Massimo, Matthews, G. F., Mattoo, S., Matveev, D., Maviglia, F., May, C. R., Mayer, M., Mayoral, M. L., Mazon, D., Mazzotta, C., Mazzucato, E., Mccarthy, P., Mcclements, K. G., Mccormick, K., Mccullen, P. A., Mccune, D., Mcdonald, D. C., Mcgregor, R., Mckivitt, J. P., Meakins, A., Medina, F., Meigs, A. G., Menard, M., Meneses, L., Menmuir, S., Merrigan, I. R., Mertens, P. h., Messiaen, A., Meszaros, B., Meyer, H., Miano, G., Michling, R., Miele, M., Miettunen, J., Migliucci, P., Miller, A. G., Mills, S. F., Milnes, J. J., Kim K., Min, Mindham, T., Miorin, E., Mirizzi, F., Mirones, E., Mironov, M., Mitteau, R., Mlynar, J., Mollard, P., Monakhov, I., Monier Garbet, P., Mooney, R., Moreau, D., Moreau, P. h., Moreira, L., Morgan, A., Morgan, P. D., Morlock, C., Morris, A. W., Mort, G. L., Murakami, M., Murari, A., Mustata, I., Nabais, F., Nakano, T., Nardon, E., Nash, G., Naulin, V., Nave, M. F. F., Nazikian, R., Nedzelski, I., Negus, C. R., Neilson, J. D., Nemtsev, G., Neto, A., Neu, R., Neubauer, O., Newbert, G. J., Newman, M., Nicholls, K. J., Nicolai, A., Nicolas, L., Nieckchen, P., Nielsen, A. H., Nielsen, S. K., Nielsen, P., Nielsen, G., Nieto, J., Nightingale, M. P. S., Nishijima, D., Noble, C., Nocente, M., Nordman, H., Norman, M., Nowak, S., Nunes, I., Oberkofler, M., Odstrcil, M., O'Gorman, T., Ohsako, T., Okabayashi, M., Olariu, S., Oleynikov, A., O'Mullane, M., Ongena, J., Orsitto, F., Oswuigwe, O. I., Ottaviani, M., Oyama, N., Pacella, D., Paget, K., Pajuste, E., Palazzo, S., Palenic, J., Pamela, J., Pamela, S., Pangione, L., Panin, A., Panja, S., Pankin, A., Pantea, A., Parail, V., Paris, P., Parisot, T. h., Park, M., Parkin, A., Parsloe, A., Parsons, B. T., Pasqualotto, R., Pastor, P., Paterson, R., Paul, M. K., Peach, D., Pearce, R. J. H., Pearson, B. J., Pearson, I. J., Pedrick, L. C., Pedrosa, M. A., Pegourie, B., Pereira, R., Pereslavtsev, P., Perevezentsev, A., Perez, von Thun C. h., Pericoli Ridolfini, V., Perona, A., Perrot, Y., Peruzzo, S., Peschanyy, S., Petravich, G., Petrizzi, L., Petrov, V., Petrzilka, V., Philipps, V., Piccolo, F., Pietropaolo, A., Pillon, M., Pinches, S. D., Pinna, T., Pintsuk, G., Piovesan, P., Pironti, A., Pisano, F., Pitts, R., Plaum, B., Plyusnin, V., Polasik, M., Poli, F. M., Pomaro, N., Pompilian, O., Poncet, L., Pool, P. J., Popovichev, S., Porcelli, F., Porfiri, M. T., Portafaix, C., Pospieszczyk, A., Possnert, G., Pozniak, K., Pradhan, S., Pragash, R., Prajapati, V., Prestopino, G., Prior, P., Prokopowicz, R., Puiatti, M. E., Purahoo, K., Pustovitov, V., Putterich, T. h., Puttmann Kneupner, D., Quercia, A., Rachlew, E., Rademaker, R., Rafiq, T., Rainford, M. S. J., Ramogida, G., Rapp, J., Rasmussen, J. J., Rathod, K., Ratta, G., Ravera, G., Refy, D., Reichle, R., Reinelt, M., Reiser, D., Reiss, R., Reiter, D., Rendell, D., Reux, C., Rewoldt, G., Ribeiro, T. T., Riccardo, V., Richards, D., Rigollet, F., Rimini, F. G., Rios, L., Riva, M., Roberts, J. E. C., Robins, R. J., Robinson, D. S., Robinson, S. A., Robson, D. W., Roche, H., Roedig, M., Rodionov, N., Rohde, V., Rolfe, A., Romanelli, M., Romano, A., Romero, J., Ronchi, E., Rosanvallon, S., Roux, C. h., Rowe, S., Rubel, M., Rubinacci, G., Ruiz, M., Ruset, C., Russell, M., Ruth, A., Ryc, L., Rydzy, A., Rzadkiewicz, J., Saarelma, S., Sabathier, F., Sabot, R., Sadakov, S., Sadvakassova, A., Sadykov, A., Sagar, P., Saibene, G., Saille, A., Saint Laurent, F., Salewski, M., Salmi, A., Salzedas, F., Samm, U., Sanchez, P., Sanders, S., Sanders, S. G., Sandford, G., Sandland, K., Sandquist, P., Sands, D. E. G., Santala, M. I. K., Santra, P., Sartori, F., Sartori, R., Sauter, O., Savelyev, A., Savtchkov, A., Scales, S. C., Scarabosio, A., Schaefer, N., Schmidt, V., Schmidt, A., Schmitz, O., Schmuck, S., Schneider, M., Scholz, M., Schoepf, K., Schweer, B., Schweinzer, J., Seki, M., Semeraro, L., Semerok, A., Sergienko, G., Sertoli, M., Shannon, M. M. J., Sharapov, S. E., Shaw, S. R., Shevelev, A., Sieglin, B., Sievering, R., Silva, C. A., Simmons, P. A., Simonetto, A., Simpson, D., Sipilae, S. K., Sips, A. C. C., Siren, P., Sirinelli, A., Sjoestrand, H., Skopintsev, D., Slabkowska, K., Smith, P. G., Snipes, J., Snoj, L., Snyder, S., Soare, S., Solano, E. R., Soleto, A., Solomon, W., Soltane, C., Sonato, P., Sopplesa, A., Sorrentino, A., Sousa, J., Sowden, C. B. C., Sozzi, C., Spaeh, P., Spelzini, T., Spence, J., Spineanu, F., Spuig, P., Stagg, R. D., Stamp, M. F., Stancalie, V., Stangeby, P., Stankiewicz, R., Stan Sion, C., Starkey, D. E., Stead, M. J., Stejner, M., Stephen, A. V., Stephen, M., Stevens, A. L., Stokes, R. B., Stork, D., Stoyanov, D., Strachan, J., Strand, P., Stransky, M., Strauss, D., Strintzi, D., Studholme, W., Na Y., Su, Subba, F., Summers, H. P., Sun, Y., Surdu Bob, C., Surrey, E., Sutton, D. J., Svensson, J., Swain, D., Syme, B. D., Symonds, I. D., Szabolics, T., Szepesi, T., Szydlowski, A., Tabares, F., Takalo, V., Takenaga, H., Tala, T., Talbot, A. R., Taliercio, C., Tame, C., Tardocchi, M., Taroni, L., Telesca, G., Terra, A., Terrington, A. O., Testa, D., Theis, J. M., Thomas, J. D., Thomas, P. D., Thomas, P. R., Thompson, V. K., Thomser, C., Thyagaraja, A., Tigwell, P. A., Tiseanu, I., Tivey, R., Todd, J. M., Todd, T. N., Tokar, M. Z., Tosti, S., Trabuc, P., Travere, J. M., Trimble, P., Trkov, A., Trukhina, E., Tsalas, M., Tsitrone, E., Jun D., Tskhakaya, Tudisco, O., Tugarinov, S., Turner, M. M., Tyrrell, S. G. J., Umeda, N., Unterberg, B., Urano, H., Urquhart, A. J., Uytdenhouwen, I., Vaccaro, A., Vadgama, A. P., Vagliasindi, G., Valcarcel, D., Valisa, M., Vallory, J., Valovic, M., Van Eester, D., van Milligen, B., van Rooij, G. J., Varandas, C. A. F., Vartanian, S., Vasava, K., Vdovin, V., Vega, J., Verdoolaege, G., Verger, J. M., Vermare, L., Verona, Claudio, Versloot, T. h., Vervier, M., Vicente, J., Villari, S., Villedieu, E., Villone, F., Vince, J. E., Vine, G. J., Vinyar, I., Viola, B., Vitale, E., Vitelli, R., Vitins, A., Vlad, M., Voitsekhovitch, I., Vrancken, M., Vulliez, K., Waldon, C. W. F., Walker, M., Walsh, M. J., Waterhouse, J., Watkins, M. L., Watson, M. J., Wauters, T., Way, M. W., Webb, C. R., Weiland, J., Weisen, H., Weiszflog, M., Wenninger, R., West, A. T., Weulersse, J. M., Wheatley, M. R., Whiteford, A. D., Whitehead, A. M., Whitehurst, A. G., Widdowson, A. M., Wiegmann, C., Wiesen, S., Wilson, A., Wilson, D., Wilson, D. J., Wilson, H. R., Wischmeier, M., Witts, D. M., Wolf, R. C., Wolowski, J., Woscov, P., Wright, J., Xu, G. S., Yavorskij, V., Yerashok, V., Yoo, M., Yorkshades, J., Young, C., Young, D., Young, I. D., Yuhong, X., Yun, S., Zabeo, L., Zabolotny, W., Zaccarian, L., Zagorski, R., Zaitsev, F. S., Zakharov, L., Zanino, R., Zaroschi, V., Zastrow, K. D., Zatz, I., Zefran, B., Zeidner, W., Zerbini, M., Zhang, T., Zhitlukin, A., Zhu, Y., Zimmermann, O., Zoita, V., Zoletnik, S., Zwingman, W., Abhangi, M., Abreu, P., Afzal, M., Alegre, D., Alessi, E., Aleynikov, P., Alkseev, A., Alsworth, I., Ambrosino, R., Andersson Sundén, E., Appel, L., Arnichand, H., Austin, Y., Bachmann, C., Aião, D., Baker, A., Bament, R., Barnes, D., Baron Wiechec, A., Bassan, M., Bastow, R., Batista, A., Bauer, R., Bauvir, B., Beal, J., Becoulet, A., Bednarczyk, P., Bell, K., Belo, J. K., Belo, P., Belonohy, É., Bergsåker, H., Berry, M., Bertalot, L., Eurskens, M. N. A., Bielecki, J., Biewer, T., Bílková, P., Binda, F., Bizarro, J. P. S., Björkas, C., Blackman, K., Blatchford, P., Bodnár, G., Bogar, O., Bonham, R., Boom, J., Booth, J., Borodin, D., Boulting, P., Bovert, K. V., Bower, C., Broeckx, ., Brown, M., Bruno, E., Buch, J., Bucko, K., Budny, R., Ufferand, H., Bulman, M., Bulmer, N., Buscarino, A., Butler, N. K., Bykov, I., Yrne, J., Byszuk, A., Cackett, A., Cain, G., Calabrò, G., Cane, J., Aputano, M., Casson, F. J., Astaldo, C., Cazzaniga, A., Handler, M., Chandra, D., Chang, C. S., Chapman, S. C., Chouli, B., Hung, N., Ciraolo, G., Citrin, J., Clark, E., Clatworthy, D., Coccorese, V., Cocilovo, ., Coenen, J. W., Ooper, D., Couchman, A. S., Cox, M. P., Cox, P., Ramp, S., Cristescu, I., Crombé, K., Crowe, R., Cull, K., Curran, D., Uruia, M., Davies, R., Davis, W., de la una, E., De Magistris, M., de Vries, 19 P. C., Deakin, K., Deane, J., Decker, J., Ejarnac, R., den Harder, N., Dendy, R. O., Denner, P., Di Maio, F., Donné, ., Dormido Canto, S., Doswon, S., Drewelow, P., Rozdowicz, K., Dumont, R., Dunne, M., Durodié, F., Duval, B., Zysiuk, N., Edappala, P. V., El Jorf, R., Riksson, J., Esteve, D., Evans, J., Fagan, D., Arthing, J. W., Fattorini, L., Faustin, J., Fawlk, N., Federici, G., Ernandes, H., Fil, A., Firdaouss, M., Fittill, L., Itzgerald, M., Flammini, D., Flinders, K., Formisano, Alessandro, Forsythe, L., Fortuna, L., Fortune, M., Frasca, M., Rassinetti, L., Freisinger, M., Fuchs, V., Fyvie, J., Gadomska, M., Gál, K., Galperti, C., Galvão, R., Aravaglia, S., Garcia Carrasco, A., García Munoz, M., Gardner, M., Gervasini, G., Ghate, M., Giegerich, ., Girardo, J. B., Gleason Gonzalez, C., Gójska, A., Oloborod’Ko, V., Gomes, R., Gonçalves, B., Gonzalez, S., Goodsell, B., Goussarov, A., Raham, . E., Grazier, N., Grist, D., Grundy, C. N., Ryaznevich, M., Guard, D., Gubb, D., Guillemaut, C., Guo, Y., Utoh, H. H, Hagar, A., All, S. J., Hallworth Cook, S. P., Hammond, K., Hart, J., Hartmann, N., Hawkins, J., Azel, S., Helou, W., Henriques, R., Hepple, ., Hermon, G., Highcock, E. G., Hillesheim, J., Hjalmarsson, A., Hogben, . H. A., Horácek, J., Howarth, P. J., Uber, A., Hurzlmeier, H., Huynh, P., Igitkhanov, J., Iglesias, D., Imríšek, M., Vanova, D., Asjacobsen, A. S. Jacobsen, James, J., Järvinen, A., Aulmes, F., Jenkins, C., Ješko, K., Joita, L., Joyce, L., Jupén, C., Hoshino, K. K, Kaniewski, J., Kantor, A., Karhunen, J., Azakov, ., Keep, J., Kennedy, C., Kenny, D., Kim, H. T., Kim, H. S., King, C., Ing, D., King, 20 R. F., Kobuchi, T., Öchl, F., Kocsis, ., Kogut, D., Mköppen, M. Köppen, Tkoskela, T. Koskela, Hrkoslowski, H. R. Koslowski, Vkotov, V. Kotov, Ekowalska, E. Kowalska Strzeciwilk, Rasilnikov, V., Krivska, A., Won, O. J., Lane, C., Lang, P. T., Lapins, J., Lawson, A., Awson, K. D., Lazaros, A., Lazzaro, E., Leichtle, D., Leichuer, P., Leipold, F., Ennholm, M., Lerche, ., Leyland, M., Leysen, W., Linsmeier, C. h., Lipschultz, B., Iu, G., Lo Schiavo, V. P., Lohr, ., Lönnroth, J., López, J., López, J. M., Ouche, F., Lowbridge, S., Lupelli, I., Acheta, ., Maj, A., Akkonen, T., Makwana, R., Mansffield, F., Mantsinen, M., Manzanares, A., Arandet, Y., Marchetto, C., Marchuk, O., Markovic, T., Marot, L., Arsen, S., Marshal, R., Martin, A., Martín de Aguilera, A., Martín Solís, J. R., Maslov, M., Maslova, V., Atejcik, S., Mattei, Massimiliano, Matveev, M., Mayer49 M. L. Mayoral, M. Mayer49 M. L. Mayoral, Cadams, R., Mccarthy, P. J., Mcdonald, D., Mckean, R., Mckehon, J., Ckinley, R., Meadows, I., Meadows, R. C., Medland, M., Medley, S., Meigh, S., Errigan, I. R., Meshchaninov, S., Middleton Gear, D., Igliucci, P., Militello Asp, E., Minucci, S., Miyoshi, Y., Mlynár, J., Moradi, S., Ordijck, S., Moreno, R., Morgan, R., Morley, L., Morris, J., Moser, L., Moulton, D., Urari, A., Muraro, A., Asakura, N. N, Neethiraj, N., Emtsev, G., Nespoli, F., Rneu, R. Neu, Nicolai, D., Nicolas, T., Nightingale, . P. S., Nilsson, E., Nodwell, D., O’Meara, B., Bryk, B., Odupitan, T., Ogawa, M. T., O’Gorman, T., O’Mullane, M., Oswuigwe, B. I., Ace, N., Page, A., Paget, A., Pagett, D., Papp, P., Aris, ., Parish, S. C. W., Perelli Cippo, E., Ch Perez von hun, 21 C. h. Perez von hun, Perez Von Thun, C., Peschanyi, S., Peterka, M., Petersson, P., Etržilka, V., Pfefferle, D., Pires dos Reis, A., Itts, R., Plusczyk, ., Porosnicu, C., Porton, M., Ossnert, G., Potzel, S., Powell, T., Pozzi, J., Prakash, R., Price, D., Price, R., Rokopowicz, R., Proudfoot, R., Puglia, P., Pulley, D., Pütterich, T. h., Rack, M., Aeder, J., Rainford, . S. J., Ranjan, S., Rasmussen, J., Rattá, G., Rayner, C., Rebai, M., Reece, D., Eed, A., Réfy, D., Regan, B., Regana, J., Reich, M., Reid, P., Reinke, M. L., Reinke, M., Eux, C., Robinson, T., Roddick, P., Odionov, R., Romanelli, S., Rowe, D., Rowley, A., Ruchko, ., Safi, E., Saint aurent, F., Sandiford, D., Santa, P., Aunders, R., Scannell, R., Schlummer, T., Schneider4 M. Scholz, M. Schneider4 M. Scholz, Chöpf, K., Serikov, A., Shabbir, A., Shannon, M., Shaw, I., Haw, S. R., Shepherd, A., Shumack, A., Sibbald, M., Silva, C., Sinha, A., Sipilä, S. K., Irén, P., Sjöstrand, H., Skiba, M., Skilton, R., Slade, B., Smith, N., Smith, T. J., Soldatov, ., Sparkes, A., Stables, G., Tamatelatos, I., Stankunas, G., Stano, M., Tephen, . V., Stevens, B. D., Ström, P., Stubbs, G., Summers, . P., Sykes, N., Szepesi, G., Suzuki, T. T, Tabarés, F., Akalo, V., Tál, B., Tamain, P., Taylor, K. A., Teplova, N., Erra, A., Teuchner, B., Tholerus, S., Thomas, F., Thomas, P., Thompson, A., Thompson, C. A., Homson, L., Thorne, L., Tipton, N., Tojo, H., Tomeš, M., Tonner, P., Towndrow, M., Ripsky, M., Tskhakaya Jun, D., Turner, I., Turnyanskiy, M., Tvalashvili, G., l. bidin, Z., Ulyatt, D., Vadgama, 2. 2. a. P., an enterghem, W., Varoutis, S., Erhoeven, R., Verona, C., Veshchev, E., Vézinet, D., Vlad, ., Voitsekhovitch, ., Vondrácek, P., Pires de Sa, W. W, Walsh, M., Warren, R. J., Aterhouse, J., Watkins, N. W., Watts, C., Webster, A., Weckmann, A., Elte, S., Wendel, ., Whetham3 AM Whitehead, S. Whetham3 A. M. Whitehead, Whitehead, B. D., Whittington, P., Iesen, S., Wilkes, D., Wilkinson, J., Williams, M., Wilson, A. R., Withenshaw, G., Ojciech, D., Wojenski, A., Wood, D., Wood, S., Woodley, C., Woznicka, U., Wu, J., Yao, L., Yapp, D., Yoo, M. G., Orkshades, J., Zacks, J., Eidner, ., Ziólkowski, A., and Zychor, I.
- Subjects
Nuclear and High Energy Physics ,Materials science ,REGIME ,Nuclear engineering ,chemistry.chemical_element ,Condensed Matter Physic ,Effective radiated power ,Tungsten ,Condensed Matter Physics ,Pedestal ,PLASMA-FACING COMPONENTS ,TOKAMAK PLASMAS ,Jet (fluid) ,TUNGSTEN ,Divertor ,perfomance ,Plasma ,PERFORMANCE ,Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin) ,chemistry ,Beta (plasma physics) ,DIVERTOR ,Beryllium ,Atomic physics - Abstract
Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H98,y2 close to 1 and βN ∼ 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential. © 2013 IAEA, Vienna.
- Published
- 2013
- Full Text
- View/download PDF
7. Analytic stability boundaries for compressional and global Alfvén eigenmodes driven by fast ions. I. Interaction via ordinary and anomalous cyclotron resonances.
- Author
-
Lestz, J. B., Gorelenkov, N. N., Belova, E. V., Tang, S. X., and Crocker, N. A.
- Subjects
- *
CYCLOTRON resonance , *FAST ions , *PLASMA beam injection heating , *CYCLOTRONS , *NEUTRAL beams , *STABILITY criterion - Abstract
Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfvén eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in ω / ω c i and | k ∥ / k ⊥ | , which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
8. Analytic stability boundaries for compressional and global Alfvén eigenmodes driven by fast ions. II. Interaction via Landau resonance.
- Author
-
Lestz, J. B., Gorelenkov, N. N., Belova, E. V., Tang, S. X., and Crocker, N. A.
- Subjects
- *
FAST ions , *RESONANCE , *NEUTRAL beams , *NUMERICAL integration , *STABILITY criterion , *TOKAMAKS - Abstract
Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfvén eigenmodes driven by the Landau resonance with super-Alfvénic fast ions. Approximations applicable to realistic neutral beam distributions and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/damping. Coupling between the CAE and GAE branches of the dispersion due to finite ω / ω c i and | k ∥ / k ⊥ | is retained and found to be responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate stability criterion, simulation results, and a database of NSTX observations of co-CAEs. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
9. Simulation of Alfvénic avalanche onset in NSTX.
- Author
-
White, R. B., Duarte, V. N., Gorelenkov, N. N., Fredrickson, E. D., and Podesta, M.
- Subjects
AVALANCHES ,PARTICLE motion ,PARTICLE beams ,ENERGY budget (Geophysics) - Abstract
In some tokamak discharges, a number of Alfvén eigenmodes (AEs) have been observed to cause a large-scale collapse of the high energy particle distribution, a phenomenon referred to as an avalanche. We examine the necessary conditions for an avalanche using the available experimental information from NSTX on the equilibrium and mode properties for two cases, one with a measurable but benign AE activity and one with an AE activity leading up to an avalanche. To produce an avalanche, the modes present in the discharge must possess resonances that can overlap with a modest increase in instability magnitude, providing a path to global particle stochastic motion. We find that the modes present in the avalanche-free discharge do not provide such a path even at a very large amplitude. During the discharge which subsequently produces an avalanche, the high energy population is growing and the Alfvén frequency is dropping due to increasing density, and we find that both these changes, producing a small increased drive or an increased resonance width for the Alfvén modes, can lead in this case to uncontrolled mode growth and large-scale beam particle loss. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
10. Collisional resonance function in discrete-resonance quasilinear plasma systems.
- Author
-
Duarte, V. N., Gorelenkov, N. N., White, R. B., and Berk, H. L.
- Subjects
- *
RESONANCE , *DISTRIBUTION (Probability theory) , *MODULATIONAL instability , *CYCLOTRON resonance - Abstract
A method is developed to analytically determine the resonance broadening function in quasilinear theory from first principles, due to either Krook or Fokker-Planck scattering collisions of marginally unstable plasma systems where discrete resonance instabilities are excited without any mode overlap. It is demonstrated that a quasilinear system that employs the calculated broadening functions reported here systematically recovers the growth rate and mode saturation levels for near-threshold plasmas previously calculated from nonlinear kinetic theory. The distribution function is also calculated, which enables precise determination of the characteristic collisional resonance width. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
11. Geodesic modes driven by untrapped resonances of NB energetic ions in tokamaks.
- Author
-
Elfimov, A. G., Galvão, R. M. O., and Gorelenkov, N. N.
- Subjects
ION mobility ,PHASE velocity ,NEUTRAL beams ,IONS ,RESONANCE ,ION traps - Abstract
Geodesic modes are typically excited by a minor concentration of energetic ions, but unstable mode frequencies are substantially different from Geodesic Acoustic Modes (GAMs) and are named EGAM (Energetic particle GAM). The EGAM instability driven by Neutral Beam Injection (NBI) has been observed in DIII-D tokamak experiments. The problem of the geodesic mode instability is analytically studied using a full drift kinetic equation. To analyze the instability condition, an ionization NBI location is assumed to be on the high field side of tokamaks. A minority NBI ion distribution is modeled by an energetic ion tail in the untrapped-passing region that remains between a magnetic axis and the trapped NBI boundary. The EGAM instability condition is defined by the parallel NBI ion velocity v | | ≈ (1.2 − 1.5) ω R 0 q 0 that has to be above the effective EGAM phase velocity. In this case, the EGAM frequency is ≈ 50 % below the standard stable GAM frequency, which is reduced by a small concentration of energetic NBI ions. Qualitative comparison of the developed geodesic mode theory with NBI heating experiments in the midregion of the tokamak plasma is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
12. Modeling of chirping toroidal Alfvén eigenmodes in NSTX.
- Author
-
White, R. B., Duarte, V. N., Gorelenkov, N. N., Fredrickson, E. D., Podestà, M., and Berk, H. L.
- Subjects
AMPLITUDE modulation ,TOROIDAL plasma - Abstract
Modulation of mode amplitude and frequency of TAE modes, observed experimentally and referred to as chirping, is investigated using a guiding center code and a δf formalism. Chirping is observed as the development in time of Fourier sidebands that move above and below the nominal mode frequency. Subsequent doubling of the sidebands is also sometimes observed. Equilibria with conventional positive magnetic shear are used, as well as NSTX reversed shear cases. The onset of chirping can be triggered by a sudden increase in mode damping, as can occur by the mode contacting the continuum. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
13. Verification and application of resonance broadened quasi-linear (RBQ) model with multiple Alfvénic instabilities.
- Author
-
Gorelenkov, N. N., Duarte, V. N., Collins, C. S., Podestà, M., and White, R. B.
- Subjects
- *
RESONANCE , *PARTICLE dynamics , *FAST ions , *PARTICLE interactions , *UNIFORM spaces , *PLASMA beam injection heating - Abstract
The resonance broadened quasilinear (RBQ) model for the problem of relaxing the hot ion distribution function in constant-of-motion 3D space [Gorelenkov et al., Nucl. Fusion 58, 082016 (2018)] is presented with the self-consistent evolution of multiple Alfvén eigenmode amplitudes. The RBQ model represents the generalization of the earlier published model [Berk et al., Nucl. Fusion 35, 1661 (1995)] by carefully examining the wave particle interaction in the presence of realistic Alfvén eigenmode (AE) structures and pitch angle scattering with the help of the guiding center code ORBIT. One aspect of the generalization is that the RBQ model goes beyond the local perturbative-pendulumlike approximation for the wave particle dynamics near the resonance. An iterative procedure is introduced to account for eigenstructures varying within the resonances. It is found that a radially localized mode structure implies a saturation level 2–3 times smaller than that predicted by an earlier bump-on-tail quasilinear model that employed uniform mode structures. We apply the RBQ code to a DIII-D plasma with an elevated q-profile where the beam ion profiles exhibit stiff transport properties [Collins et al., Phys. Rev. Lett. 116, 095001 (2016)]. The properties of AE driven fast ion distribution relaxation are studied for validations of the applied RBQ model in DIII-D discharges. Initial results show that the model is robust, is numerically efficient, and can predict fast ion relaxation in present and future burning plasma experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Comment on "Theory of Alfvén-slow frequency gaps and discovery of Alfvén-slow eigenmodes in tokamaks" [Phys. Plasmas 26, 082508 (2019)].
- Author
-
Gorelenkov, N. N. and Berk, H. L.
- Subjects
- *
TOKAMAKS , *CONTROLLED fusion , *PLASMA Alfven waves , *LANDAU damping , *PLASMA equilibrium - Abstract
BAAE gap represented by the analytic expression, Eq. (9) of Ref. [5], and the Alfvén wave to slow mode coupling analytic dependence obtained in the CKPN paper for the plasma equilibrium at m / n =1.75, =(C s / V A)2= /2=2.5×10-3. Essentially, the only possibly new result reported in the CKPN paper is the claim that they have discovered a new mode for the MHD continuum, which includes, due to finite beta, a coupling of the Alfvén to the acoustic wave. [5] and [8], which show that the modified Alfvén branch, given in Eq. (84a) of Ref. [8], with clear Alfvén velocity dependence, and is opposite to acoustic interpretation of CKPN paper Fig. [Extracted from the article]
- Published
- 2021
- Full Text
- View/download PDF
15. An overview of recent physics results from NSTX
- Author
-
Kaye, SM, Abrams, T, Ahn, JW, Allain, JP, Andre, R, Andruczyk, D, Barchfeld, R, Battaglia, D, Bhattacharjee, A, Bedoya, F, Bell, RE, Belova, E, Berkery, J, Berry, L, Bertelli, N, Beiersdorfer, P, Bialek, J, Bilato, R, Boedo, J, Bonoli, P, Boozer, A, Bortolon, A, Boyer, MD, Boyle, D, Brennan, D, Breslau, J, Brooks, J, Buttery, R, Capece, A, Canik, J, Chang, CS, Crocker, N, Darrow, D, Davis, W, Delgado-Aparicio, L, Diallo, A, D'Ippolito, D, Domier, C, Ebrahimi, F, Ethier, S, Evans, T, Ferraro, N, Ferron, J, Finkenthal, M, Fonck, R, Fredrickson, E, Fu, GY, Gates, D, Gerhardt, S, Glasser, A, Gorelenkov, N, Gorelenkova, M, Goumiri, I, Gray, T, Green, D, Guttenfelder, W, Harvey, R, Hassanein, A, Heidbrink, W, Hirooka, Y, Hooper, EB, Hosea, J, Humphreys, D, Jaeger, EF, Jarboe, T, Jardin, S, Jaworski, MA, Kaita, R, Kessel, C, Kim, K, Koel, B, Kolemen, E, Kramer, G, Ku, S, Kubota, S, Lahaye, RJ, Lao, L, Leblanc, BP, Levinton, F, Liu, D, Lore, J, Lucia, M, Jr, NL, Maingi, R, Majeski, R, Mansfield, D, Maqueda, R, McKee, G, Medley, S, Meier, E, Menard, J, Mueller, D, Munsat, T, Muscatello, C, Myra, J, Nelson, B, Nichols, J, Ono, M, Osborne, T, and Park, JK
- Subjects
Physics::Plasma Physics - Abstract
The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1T and 2MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.
- Published
- 2015
- Full Text
- View/download PDF
16. Emission in the ion cyclotron range of frequencies (ICE) on NSTX and NSTX-U.
- Author
-
Fredrickson, E. D., Gorelenkov, N. N., Bell, R. E., Diallo, A., LeBlanc, B. P., and Podestà, M.
- Subjects
- *
ION emission , *CYCLOTRONS , *MAGNETIC flux density , *PLASMA boundary layers , *LONGITUDINAL waves - Abstract
We report here on observations of magnetic fluctuations in the ion-cyclotron frequency range on NSTX and NSTX-U. In many respects, the fluctuations appear similar to the ion cyclotron emission (ICE) seen in conventional tokamaks. However, a significant difference between previous observations of ICE and the ICE on NSTX is that the frequency of ICE in conventional tokamaks is typically near the ion cyclotron frequency of the energetic fast ions at the plasma edge. In NSTX and NSTX-U, the magnetic fluctuation frequency corresponds to the ion cyclotron frequency deeper in the plasma, near the location of an internal transport barrier. As on conventional tokamaks, higher harmonics of the deuterium cyclotron frequency, as high as the seventh, are seen with the strongest signal sometimes from higher harmonics. The emission usually appears as an irregular sequence of short bursts typically ≤100 μs in duration although nearly continuous emission for several ms has also been seen under some conditions. Measurements of the emission with a toroidal array of fast probes show that the emission is a long wavelength, spatially coherent mode. The emission frequency does not follow an Alfvénic scaling with density, as seen for compressional Alfvén eigenmodes, but does show a linear scaling with local magnetic field strength. The measured emission shows a compressional polarization consistent with a compressional Alfvén wave. No correlation between the neutron rate and the ICE amplitude is seen. Three-wave coupling between the instability responsible for the ICE and lower frequency modes has also been observed. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
17. Collisional enhancement of energetic particle Alfvénic resonance width in tokamaks.
- Author
-
White, R. B., Duarte, V. N., Gorelenkov, N. N., and Meng, G.
- Subjects
RESONANCE ,FAST ions ,DISTRIBUTION (Probability theory) ,TOKAMAKS ,RESONANCE effect ,ABSOLUTE value - Abstract
The phase-space structure of resonances between fast ions and an Alfvénic mode and the associated modification of density profiles in tokamaks are studied as a function of particle collisions. Guiding-center simulations in a realistic tokamak equilibrium are employed to address the resonance broadening parametric dependencies with respect to changes in the pitch-angle scattering rate. The rate of collisional replenishment, along with resonance strength, given by the combination of eigenmode and resonance structures and equilibrium parameters, determines saturation amplitudes for a given damping rate. As seen from the distribution function flattening, collisions have an effect of broadening the resonances, while the absolute value of δf decreases with increasing collisionality. It is observed that the collisional broadening can be comparable to the collisionless resonance width due to the mode amplitude alone. The resonance broadening coefficients are compared with the existing theory based on analytically expected saturation levels, showing fair agreement. The results can be useful in assisting reduced kinetic models, such as quasilinear models, when prescribing the effective resonance phase-space width, i.e., the mode-particle interaction platform, due to collisional or turbulent processes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
18. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment
- Author
-
Sabbagh, SA, Ahn, JW, Allain, J, Andre, R, Balbaky, A, Bastasz, R, Battaglia, D, Bell, M, Bell, R, Beiersdorfer, P, Belova, E, Berkery, J, Betti, R, Bialek, J, Bigelow, T, Bitter, M, Boedo, J, Bonoli, P, Boozer, A, Bortolon, A, Boyle, D, Brennan, D, Breslau, J, Buttery, R, Canik, J, Caravelli, G, Chang, C, Crocker, N, Darrow, D, Davis, B, Delgado-Aparicio, L, Diallo, A, Ding, S, D'Ippolito, D, Domier, C, Dorland, W, Ethier, S, Evans, T, Ferron, J, Finkenthal, M, Foley, J, Fonck, R, Frazin, R, Fredrickson, E, Fu, G, Gates, D, Gerhardt, S, Glasser, A, Gorelenkov, N, Gray, T, Guo, Y, Guttenfelder, W, Hahm, T, Harvey, R, Hassanein, A, Heidbrink, W, Hill, K, Hirooka, Y, Hooper, EB, Hosea, J, Humphreys, D, Indireshkumar, K, Jaeger, F, Jarboe, T, Jardin, S, Jaworski, M, Kaita, R, Kallman, J, Katsuro-Hopkins, O, Kaye, S, Kessel, C, Kim, J, Kolemen, E, Kramer, G, Krasheninnikov, S, Kubota, S, Kugel, H, La Haye, RJ, Lao, L, Leblanc, B, Lee, W, Lee, K, Leuer, J, Levinton, F, Liang, Y, Liu, D, Lore, J, Luhmann, N, Maingi, R, Majeski, R, Manickam, J, Mansfield, D, Maqueda, R, Mazzucato, E, McLean, A, McCune, D, McGeehan, B, McKee, G, Medley, S, and Meier, E
- Subjects
Physics::Plasma Physics - Abstract
Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate βN is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding βN = 6.4 and βN/li = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V∥/V = 1 where destabilizing compressional Alfvén eigenmode resonances are expected. Applied 3D fields altered global Alfvén eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m-2 to less than 1.5 MW m-2). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current Ip = 0.7 MA and between 70-100% with HHFW application at Ip = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < Ip (MA) < 1.35. © 2013 IAEA, Vienna.
- Published
- 2013
- Full Text
- View/download PDF
19. Resonances between high energy particles and ideal magnetohydrodynamic modes in tokamaks.
- Author
-
White, R. B., Gorelenkov, N. N., Duarte, V. N., and Berk, H. L.
- Subjects
- *
HIGH energy particle interactions , *MAGNETOHYDRODYNAMICS , *TOKAMAKS , *SIMPLE pendulum , *EIGENFUNCTIONS , *PLASMA physics - Abstract
Particle trajectory surfaces in an ideal magnetohydrodynamic high energy particle resonance are studied using kinetic Poincaré plots and through a calculation by perturbing near the resonance and finding canonical variables in the resonance, allowing the study of the distortion of the structure from that of a simple pendulum and to assist in the construction of models for the modification of particle distributions due to the modes. It is found that the narrow structure of an ideal mode eigenfunction can lead to a significant decrease in the resonance width compared to a case in which the eigenfunction does not vary within the resonant island. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
20. Energetic-particle-modified global Alfvén eigenmodes.
- Author
-
Lestz, J. B., Belova, E. V., and Gorelenkov, N. N.
- Subjects
PLASMA Alfven waves ,FAST ions ,CYCLOTRONS ,DOPPLER effect ,DISTRIBUTION (Probability theory) - Abstract
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0 / v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0 / v A . This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
21. Overview of physics results from NSTX
- Author
-
Raman, R, Ahn, JW, Allain, JP, Andre, R, Bastasz, R, Battaglia, D, Beiersdorfer, P, Bell, M, Bell, R, Belova, E, Berkery, J, Betti, R, Bialek, J, Bigelow, T, Bitter, M, Boedo, J, Bonoli, P, Boozer, A, Bortolon, A, Brennan, D, Breslau, J, Buttery, R, Canik, J, Caravelli, G, Chang, C, Crocker, NA, Darrow, D, Davis, W, Delgado-Aparicio, L, Diallo, A, Ding, S, D'Ippolito, D, Domier, C, Dorland, W, Ethier, S, Evans, T, Ferron, J, Finkenthal, M, Foley, J, Fonck, R, Frazin, R, Fredrickson, E, Fu, G, Gates, D, Gerhardt, S, Glasser, A, Gorelenkov, N, Gray, T, Guo, Y, Guttenfelder, W, Hahm, T, Harvey, R, Hassanein, A, Heidbrink, W, Hill, K, Hirooka, Y, Hooper, EB, Hosea, J, Hu, B, Humphreys, D, Indireshkumar, K, Jaeger, F, Jarboe, T, Jardin, S, Jaworski, M, Kaita, R, Kallman, J, Katsuro-Hopkins, O, Kaye, S, Kessel, C, Kim, J, Kolemen, E, Krasheninnikov, S, Kubota, S, Kugel, H, La Haye, R, Lao, L, Leblanc, B, Lee, W, Lee, K, Leuer, J, Levinton, F, Liang, Y, Liu, D, Luhmann, N, Maingi, R, Majeski, R, Manickam, J, Mansfield, D, Maqueda, R, Mazzucato, E, McLean, A, McCune, D, McGeehan, B, McKee, G, Medley, S, Menard, J, Menon, M, and Meyer, H
- Abstract
In the last two experimental campaigns, the low aspect ratio NSTX has explored physics issues critical to both toroidal confinement physics and ITER. Experiments have made extensive use of lithium coatings for wall conditioning, correction of non-axisymmetric field errors and control of n = 1 resistive wall modes (RWMs) to produce high-performance neutral-beam heated discharges extending to 1.7 s in duration with non-inductive current fractions up to 0.7. The RWM control coils have been used to trigger repetitive ELMs with high reliability, and they have also contributed to an improved understanding of both neoclassical tearing mode and RWM stabilization physics, including the interplay between rotation and kinetic effects on stability. High harmonic fast wave (HHFW) heating has produced plasmas with central electron temperatures exceeding 6 keV. The HHFW heating was used to show that there was a 20-40% higher power threshold for the L-H transition for helium than for deuterium plasmas. A new diagnostic showed a depletion of the fast-ion density profile over a broad spatial region as a result of toroidicity-induced Alfvén eigenmodes (TAEs) and energetic-particle modes (EPMs) bursts. In addition, it was observed that other modes (e.g. global Alfvén eigenmodes) can trigger TAE and EPM bursts, suggesting that fast ions are redistributed by high-frequency AEs. The momentum pinch velocity determined by a perturbative technique decreased as the collisionality was reduced, although the pinch to diffusion ratio, Vpinch/χ, remained approximately constant. The mechanisms of deuterium retention by graphite and lithium-coated graphite plasma-facing components have been investigated. To reduce divertor heat flux, a novel divertor configuration, the 'snowflake' divertor, was tested in NSTX and many beneficial aspects were found. A reduction in the required central solenoid flux has been realized in NSTX when discharges initiated by coaxial helicity injection were ramped in current using induction. The resulting plasmas have characteristics needed to meet the objectives of the non-inductive start-up and ramp-up program of NSTX. © 2011 IAEA, Vienna.
- Published
- 2011
- Full Text
- View/download PDF
22. Beam distribution modification by Alfv́n modes
- Author
-
White, RB, Gorelenkov, N, Heidbrink, WW, and Van Zeeland, MA
- Subjects
Physics::Plasma Physics ,Physics::Accelerator Physics - Abstract
Modification of a deuterium beam distribution in the presence of low amplitude toroidal Alfv́n eigenmodes and reversed shear Alfv́n eigenmodes in a toroidal magnetic confinement device is examined. Comparison to experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution. © 2010 American Institute of Physics.
- Published
- 2010
- Full Text
- View/download PDF
23. Overview of results from the national spherical torus experiment (NSTX)
- Author
-
Gates, DA, Ahn, J, Allain, J, Andre, R, Bastasz, R, Bell, M, Bell, R, Belova, E, Berkery, J, Betti, R, Bialek, J, Biewer, T, Bigelow, T, Bitter, M, Boedo, J, Bonoli, P, Boozer, A, Brennan, D, Breslau, J, Brower, D, Bush, C, Canik, J, Caravelli, G, Carter, M, Caughman, J, Chang, C, Choe, W, Crocker, N, Darrow, D, Delgado-Aparicio, L, Diem, S, D'Ippolito, D, Domier, C, Dorland, W, Efthimion, P, Ejiri, A, Ershov, N, Evans, T, Feibush, E, Fenstermacher, M, Ferron, J, Finkenthal, M, Foley, J, Frazin, R, Fredrickson, E, Fu, G, Funaba, H, Gerhardt, S, Glasser, A, Gorelenkov, N, Grisham, L, Hahm, T, Harvey, R, Hassanein, A, Heidbrink, W, Hill, K, Hillesheim, J, Hillis, D, Hirooka, Y, Hosea, J, Hu, B, Humphreys, D, Idehara, T, Indireshkumar, K, Ishida, A, Jaeger, F, Jarboe, T, Jardin, S, Jaworski, M, Ji, H, Jung, H, Kaita, R, Kallman, J, Katsuro-Hopkins, O, Kawahata, K, Kawamori, E, Kaye, S, Kessel, C, Kim, J, Kimura, H, Kolemen, E, Krasheninnikov, S, Krstic, P, Ku, S, Kubota, S, Kugel, H, La Haye, R, Lao, L, Leblanc, B, Lee, W, Lee, K, Leuer, J, Levinton, F, Liang, Y, Liu, D, Luhmann, N, Maingi, R, Majeski, R, Manickam, J, and Mansfield, D
- Subjects
Physics::Plasma Physics - Abstract
The mission of the National Spherical Torus Experiment (NSTX) is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of high harmonic fast-waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance li ∼ 0.4 with strong shaping (κ ∼ 2.7, δ ∼ 0.8) with βN approaching the with-wall β-limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction fNI ∼ 71%. Instabilities driven by super-Alfvénic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvénic. Linear toroidal Alfvén eigenmode thresholds and appreciable fast ion loss during multi-mode bursts are measured and these results are compared with theory. The impact of n > 1 error fields on stability is an important result for ITER. Resistive wall mode/resonant field amplification feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are results of lithium coating experiments, momentum confinement studies, scrape-off layer width scaling, demonstration of divertor heat load mitigation in strongly shaped plasmas and coupling of coaxial helicity injection plasmas to ohmic heating ramp-up. These results advance the ST towards next step fusion energy devices such as NHTX and ST-CTF. © 2009 IAEA, Vienna.
- Published
- 2009
- Full Text
- View/download PDF
24. Toroidal Alfvén eigenmode avalanches in NSTX
- Author
-
Fredrickson, E. D., Crocker, N. A., Darrow, D., Gorelenkov, N. N., Heidbrink, W. W., Kubota, S., Levinton, F. M., Liu, D., Medley, S. S., Podesta, M., Yuh, H., and Ronald E Bell
- Published
- 2008
25. β suppression of Alfvén cascade modes in NSTX
- Author
-
Fredrickson, E. D., Crocker, N. A., Gorelenkov, N. N., Heidbrink, W. W., Kubota, S., Levinton, F. M., Yuh, H., Menard, J. E., and Ronald E Bell
- Published
- 2007
26. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks.
- Author
-
Duarte, V. N., Berk, H. L., Gorelenkov, N. N., Heidbrink, W. W., Kramer, G. J., Nazikian, R., Pace, D. C., Podestà, M., and Van Zeeland, M. A.
- Subjects
TOKAMAKS ,RESONANCE ,FUSION reactors ,OSCILLATIONS ,PERTURBATION theory - Abstract
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to microturbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
27. The effect of sawtooth oscillations on the alpha particle distribution and energy balance in the ITER plasma.
- Author
-
Zaitsev, F., Gorelenkov, N., Petrov, M., Afanasyev, V., and Mironov, M.
- Subjects
- *
SAWTOOTH oscillations , *TOROIDAL plasma , *ALPHA rays , *DISTRIBUTION (Probability theory) - Abstract
The mixing of toroidal plasma under the conditions of sawtooth oscillations is considered using the Kadomtsev model. A new mixing formula for the averaged distribution function of fast transit and trapped particles is proposed in the methodology of a kinetic equation averaged over drift trajectories. The proposed formula generalizes the known results for the case of non-circular magnetic surfaces, an arbitrary aspect ratio, and charged particle drift trajectories significantly deviating from the magnetic surfaces. The formula is applicable for a sufficiently wide class of instabilities. The 3D kinetic equation is numerically solved using the FPP- 3D computation code for parameters close to the ITER inductive scenario. The alpha particle distribution function and the power introduced by alpha particles in plasma when sawtooth oscillations occur are calculated. It is shown that such oscillations may change the energy input of a thermonuclear reaction in certain areas by several times. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
28. Nonlinear simulations of beam-driven compressional Alfvén eigenmodes in NSTX.
- Author
-
Belova, E. V., Gorelenkov, N. N., Crocker, N. A., Lestz, J. B., Fredrickson, E. D., Tang, S., and Tritz, K.
- Subjects
- *
PLASMA Alfven waves , *H-mode plasma confinement , *TOROIDAL plasma , *ELECTRON temperature , *PLASMA physics - Abstract
Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n = 4 - 9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfvén wave (KAW) that occurs on the high-field side at the Alfvén resonance location. High-frequency Alfvén eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beamdriven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
29. Observation of Compressional Alfvén Modes During Neutral-Beam Heating on the National Spherical Torus Experiment
- Author
-
Bell, R., Cheng, C. Z., Darrow, D., Fredrickson, E. D., and Gorelenkov, N.
- Abstract
Physical Review Letters
- Published
- 2001
- Full Text
- View/download PDF
30. Phase space effects on fast ion distribution function modeling in tokamaks.
- Author
-
Podestà, M., Gorelenkova, M., Fredrickson, E. D., Gorelenkov, N. N., and White, R. B.
- Subjects
SPACE in motion pictures ,FUSION reactors ,PLASMA confinement devices ,TOKAMAKS ,IONS - Abstract
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phasespace resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities. Published by AIP Publishing. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
31. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor
- Author
-
Bell, M. G., Batha, S., Beer, M., Bell, R. E., Belov, A., Berk, H., Bemabei, S., Bitter, M., Breizman, B., Bretz, N. L., Budny, R., Bush, C. E., Callen, J., Cauffman, S., Chang, C. S., Chang, Z., Cheng, C. Z., Darrow, D. S., Dendy, R. O., Dorland, W., Duong, H., Efthimion, P. C., Ernst, D., Evenson, H., Fisch, N. J., Fisher, R., Fonck, R. J., Fredrickson, E. D., Fu, G. Y., Furth, H. P., Gorelenkov, N. N., Goloborodko, V. Y., Grek, B., Grisham, L. R., Hammett, G. W., Hawryluk, R. J., Heidbrink, W., Herrmann, H. W., Hermann, M. C., Hill, K. W., Hogan, J., Hooper, B., Hosea, J. C., Houlberg, W. A., Hughes, M., Jassby, D. L., Jobes, F. C., Johnson, D. W., Kaita, R., Kaye, S., Kesner, J., Kim, J. S., Kissick, M., Krasilnikov, A. V., Kugel, H., Kumar, A., Lam, N. T., Lamarche, P., Leblanc, B., Levinton, F. M., Ludescher, C., Machuzak, J., Majeski, R. P., Manickam, J., Mansfield, D. K., Mauel, M., Mazzucato, E., Mcchesney, J., Mccune, D. C., Mckee, G., Mcguire, K. M., Meade, D. M., Medley, S. S., Mikkelsen, D. R., Mirnov, S. V., Mueller, D., Nagayama, Y., Navratil, G. A., Nazikian, R., Okabayashi, M., Osakabe, M., Owens, D. K., Park, H. K., Park, W., Paul, S. F., Petrov, M. P., Phillips, C. K., Phillips, M., Phillips, P., Ramsey, A. T., Rice, B., Redi, M. H., Rewoldt, G., Reznik, S., Roquemore, A. L., Rogers, J., Ruskov, E., Sabbagh, S. A., Sasao, M., Schilling, G., Schmidt, G. L., Scott, S. D., Semenov, I., Senko, T., Skinner, C. H., Stevenson, T., Strait, E. J., Stratton, B. C., Strachan, J. D., Stodiek, W., Synakowski, E., Takahashi, H., Tang, W., Taylor, G., Thompson, M. W., Vongoeler, S., Vonhalle, A., Walters, R. T., Wang, S., White, R., Wieland, R. M., William Dorland, Wilson, J. R., Wong, K. L., Wurden, G. A., Yamada, M., Yavorski, V., Young, K. M., Zakharov, L., Zarnstorff, M. C., and Zweben, S. J.
- Published
- 1997
- Full Text
- View/download PDF
32. Recent D-T results on TFTR
- Author
-
Johnson, DW, Arunasalam, V, Barnes, CW, Batha, SH, Bateman, G, Beer, M, Bell, MG, Bell, R, Bitter, M, Bretz, NL, Budny, R, Bush, CE, Cauffman, S, Chang, CS, Chang, Z, Cheng, CZ, Darrow, DS, Dendy, R, Dorland, W, Duong, HH, Durst, R, Efthimion, PC, Ernst, D, Evenson, H, Fisch, N, Fisher, R, Fonck, RJ, Fredrickson, E, Fu, GY, Fujita, T, Furth, HP, Gorelenkov, N, Grek, B, Grisham, LR, Hammett, G, Hawryluk, RJ, Heidbrink, W, Herrmann, HW, Hill, KW, Hosea, J, Hsuan, H, Hughes, M, Janos, A, Jassby, DL, Jobes, FC, Johnson, LC, Kamperschroer, J, Kesner, J, Kotschenreuther, M, Kugel, H, Lamarche, PH, Leblanc, B, Levinton, FM, MacHuzak, J, Majeski, R, Mansfield, DK, Marmar, ES, Mazzucato, E, Mauel, M, McChesney, J, McGuire, KM, McKee, G, Meade, DM, Medley, SS, Mikkelsen, DR, Mirnov, SV, Mueller, D, Nazikian, R, Osakabe, M, Owens, DK, Park, H, Park, W, Parks, P, Paul, SF, Petrov, M, Phillips, CK, Phillips, M, Qualls, AL, Ramsey, A, Redi, MH, Rewoldt, G, Roberts, D, Rogers, J, Roquemore, AL, Ruskov, E, Sabbagh, SA, Sasao, M, Schilling, G, Schivell, J, Schmidt, GL, Scott, SD, Semenov, I, Sesnic, S, Skinner, CH, Spong, D, Stratton, BC, Strachan, JD, Stodiek, W, Synakowski, E, and Takahashi, H
- Subjects
Physics::Plasma Physics - Abstract
Routine tritium operation in TFTR has permitted investigations of alpha particle physics in parameter ranges resembling those of a reactor core. ICRF wave physics in a DT plasma and the influence of isotopic mass on supershot confinement have also been studied. Continued progress has been made in optimizing fusion power production in TFTR, using extended machine capability and Li wall conditioning. Performance is currently limited by MHD stability. A new reversed magnetic shear regime is being investigated with reduced core transport and a higher predicted stability limit.
- Published
- 1995
- Full Text
- View/download PDF
33. Plasma-surface interactions in TFTR DT experiments
- Author
-
Owens, DK, Adler, H, Alling, P, Ancher, C, Anderson, H, Anderson, JL, Ashcroft, D, Barnes, CW, Barnes, G, Batha, S, Bell, MG, Bell, R, Bitter, M, Blanchard, W, Bretz, NL, Budny, R, Bush, CE, Camp, R, Caorlin, M, Cauffman, S, Chang, Z, Cheng, CZ, Collins, J, Coward, G, Darrow, DS, DeLooper, J, Duong, H, Dudek, L, Durst, R, Efthimion, PC, Ernst, D, Fisher, R, Fonck, RJ, Fredrickson, E, Fromm, N, Fu, GY, Furth, HP, Gentile, C, Gorelenkov, N, Grek, B, Grisham, LR, Hammett, G, Hanson, GR, Hawryluk, RJ, Heidbrink, W, Hermann, HW, Hill, KW, Hosea, J, Hsuan, H, and Janos, A
- Subjects
inorganic chemicals - Abstract
TFTR has begun its campaign to study deuterium-tritium fusion under reactor-like conditions. Variable amounts of deuterium and tritium neutral beam power have been used to maximize fusion power, study alpha heating, investigate alpha particle confinement, and search for alpha driven plasma instabilities. Additional areas of study include energy and particle transport and confinement, ICRF heating schemes for DT plasmas, tritium retention, and fusion in high βp plasmas. The majority of this work is done in the TFTR supershot confinement regime. To obtain supershots, extensive limiter conditioning using helium fueled ohmic discharges and lithium pellet injection into ohmic and neutral beam heated plasmas is performed, resulting in a low recycling limiter. The relationship between recycling and core plasma confinement has been studied by using helium, deuterium and high-Z gas puffs to simulate high recycling limiter conditions. These studies show that confinement in TFTR supershots is very sensitive to the influx of neutral particles at the plasma edge. © 1995, All rights reserved.
- Published
- 1995
- Full Text
- View/download PDF
34. Preparations for deuterium-tritium experiments on the Tokamak Fusion Test Reactor
- Author
-
Hawryluk, RJ, Adler, H, Alling, P, Ancher, C, Anderson, H, Anderson, JL, Anderson, JW, Arunasalam, V, Ascione, G, Aschroft, D, Barnes, CW, Barnes, G, Batchelor, DB, Bateman, G, Batha, S, Baylor, LA, Beer, M, Bell, MG, Biglow, TS, Bitter, M, Blanchard, W, Bonoli, P, Bretz, NL, Brunkhorst, C, Budny, R, Burgess, T, Bush, H, Bush, CE, Camp, R, Caorlin, M, Carnevale, H, Chang, Z, Chen, L, Cheng, CZ, Chrzanowski, J, Collazo, I, Collins, J, Coward, G, Cowley, S, Cropper, M, Darrow, DS, Daugert, R, DeLooper, J, Duong, H, Dudek, L, Durst, R, Efthimion, PC, Ernst, D, Faunce, J, Fonck, RJ, Fredd, E, Fredrickson, E, Fromm, N, Fu, GY, Furth, HP, Garzotto, V, Gentile, C, Gettelfinger, G, Gilbert, J, Gioia, J, Goldfinger, RC, Golian, T, Gorelenkov, N, Gouge, MJ, Grek, B, Grisham, LR, Hammett, G, Hanson, GR, Heidbrink, W, Hermann, HW, Hill, KW, Hirshman, S, Hoffman, DJ, Hosea, J, Hulse, RA, and Hsuan, H
- Abstract
The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert™ system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ≈ 10 MW of fusion power, evaluation of confinement, and heating in deuteriumtritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined a particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed. © 1994 American Institute of Physics.
- Published
- 1994
- Full Text
- View/download PDF
35. Coupling of Neutral-Beam-Driven Compressional Alfvén Eigenmodes to Kinetic Alfvén Waves in NSTX Tokamak and Energy Channeling.
- Author
-
Belova, E. V., Gorelenkov, N. N., Fredrickson, E. D., Tritz, K., and Crocker, N. A.
- Subjects
- *
BENJAMIN-Feir instability , *WAVE mechanics , *ELECTROPHORETIC deposition , *NEUTRAL beams , *VIBRATION (Mechanics) - Abstract
An energy-channeling mechanism is proposed to explain flattening of the electron temperature profiles at a high beam power in the beam-heated National Spherical Torus Experiment (NSTX). Results of self-consistent simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in NSTX are presented that demonstrate strong coupling of CAEs to kinetic Alfvén waves at the Alfvén resonance location. It is suggested that CAEs can channel energy from the beam ions to the location of the resonant mode conversion at the edge of the beam density profile, modifying the energy deposition profile. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
36. Non-resonant destabilization of (1/1) internal kink mode by suprathermal electron pressure.
- Author
-
Delgado-Aparicio, L., Sugiyama, L., Shiraiwa, S., Irby, J., Granetz, R., Parker, R., Baek, S. G., Faust, I., Wallace, G., Gates, D. A., Gorelenkov, N., Mumgaard, R., Scott, S., Bertelli, N., Gao, C., Greenwald, M., Hubbard, A., Hughes, J., Marmar, E., and Phillips, P. E.
- Subjects
ELECTRONS ,HIGH pressure (Technology) ,TOKAMAKS ,PLASMA gases ,SAWTOOTH generators - Abstract
New experimental observations are reported on the structure and dynamics of short-lived periodic (1, 1) "fishbone"-like oscillations that appear during radio frequency heating and current-drive experiments in tokamak plasmas. For the first time, measurements can directly relate changes in the high energy electrons to the mode onset, saturation, and damping. In the relatively high collisionality of Alcator C-Mod with lower hybrid current drive, the instability appears to be destabilized by the non-resonant suprathermal electron pressure--rather than by wave-particle resonance, rotates toroidally with the plasma and grows independently of the (1, 1) sawtooth crash driven by the thermal plasma pressure. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
37. Excitation of Alfvén modes by energetic particles in magnetic fusion.
- Author
-
Gorelenkov, N. N.
- Subjects
- *
NUCLEAR excitation , *PARTICLES (Nuclear physics) , *NUCLEAR fusion , *ENERGY dissipation , *PLASMA heating , *TOKAMAKS , *MAGNETOHYDRODYNAMIC instabilities - Abstract
Ions with energies above the plasma ion temperature (also called super thermal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma heat source to compensate for energy loss. Sources for super thermal ions are direct injection via neutral beams, RF heating and fusion reactions. Being super thermal, ions have the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD) cavity modes, in particular, various Alfvén and Alfvénacoustic Eigenmodes. It is an area where ideal MHD and kinetic theories can be tested with great accuracy. This paper touches upon key motivations to study the energetic ion interactions with MHD modes. One is the possibility of controlling the heating channel of present and future tokamak reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led to vessel wall damages. This paper reviews some experimental and theoretical advances and the developments of the predictive tools in the area of EP wave interactions. Some recent important results and challenges are discussed. Many predicted instabilities pose a challenge for ITER, where the alpha-particle population is likely to excite various modes. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
38. Stochastic RF Heating of Thermal Ions.
- Author
-
Fredrickson, E. D., Phillips, C. K., Hosea, J., Wilson, J. R., Bonoli, P., Gorelenkov, N. N., Wright, J., and Valeo, E.
- Subjects
IONS ,CYCLOTRONS ,SOLUTION (Chemistry) ,ELECTRONS ,RADIO frequency - Abstract
An idea for directly heating the thermal ion population with radio frequency waves at frequencies below the ion cyclotron frequency is proposed. This method would increase fusion efficiency by avoiding the lossy electron channel [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
39. ICRH Current Ramp Discharges and Alfven Cascades in Alcator C-Mod.
- Author
-
Porkolab, M., Edlund, E., Snipes, J., Wukitch, S., Basse, N., Bonoli, P., Boswell, C., Fiore, C., Gorelenkov, N., Hubbard, A., Kramer, G. J., Lin, L., Lin, Y., Marmar, E., and Schilling, G.
- Subjects
ELECTRIC currents ,MAGNETOHYDRODYNAMIC waves ,PLASMA gases ,RESEARCH ,IONS ,PHYSICS - Abstract
Current ramp experiments with intense ICRF power injected early in the ramp phase in Alcator C-Mod have been carried out. The goal of these experiments is to produce suitable reversed shear (RS) target plasmas for future Advanced Tokamak (AT) plasma research. Future plans call for off-axis injection of Lower Hybrid current drive (LHCD) to maintain the RS plasmas while increasing beta with additional ICRH. In the present experiments evidence of RS q-profiles has been demonstrated in the ramp stage of the discharge with the observation of Alfven-Cascades (or Reversed Shear Alfven-Eigenmodes or RSAE) driven by the energetic ICRF ion tail. The frequencies are in agreement with MHD code predictions. Evidence of sawtooth delay has also been observed by increasing the injected ICRF power. © 2005 American Institute of Physics [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
40. Comparison of methods for numerical calculation of continuum damping.
- Author
-
Bowden, G. W., Könies, A., Hole, M. J., Gorelenkov, N. N., and Dennis, G. R.
- Subjects
NUMERICAL analysis ,DAMPING (Mechanics) ,PLASMA gases ,FINITE element method ,RESONANCE - Abstract
Continuum resonance damping is an important factor in determining the stability of certain global modes in fusion plasmas. A number of analytic and numerical approaches have been developed to compute this damping, particularly, in the case of the toroidicity-induced shear Alfvén eigenmode. This paper compares results obtained using an analytical perturbative approach with those found using resistive and complex contour numerical approaches. It is found that the perturbative method does not provide accurate agreement with reliable numerical methods for the range of parameters examined. This discrepancy exists even in the limit where damping approaches zero. When the perturbative technique is implemented using a standard finite element method, the damping estimate fails to converge with radial grid resolution. The finite elements used cannot accurately represent the eigenmode in the region of the continuum resonance, regardless of the number of radial grid points used. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
41. Comparing the line broadened quasilinear model to Vlasov code.
- Author
-
Ghantous, K., Berk, H. L., and Gorelenkov, N. N.
- Subjects
QUASILINEARIZATION ,VLASOV equation ,PLASMA instabilities ,SATURATION (Chemistry) ,CHEMICAL stability ,PLASMA physics ,SIMULATION methods & models - Abstract
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
42. The effect of the fast-ion profile on Alfvén eigenmode stability.
- Author
-
Heidbrink, W. W., Van Zeeland, M. A., Austin, M. E., Bass, E. M., Ghantous, K., Gorelenkov, N. N., Grierson, B. A., Spong, D. A., and Tobias, B. J.
- Subjects
FAST ions ,PLASMA Alfven waves ,STABILITY theory ,PLASMA beam injection heating ,SHEAR flow ,TOROIDAL magnetic circuits - Abstract
Different combinations of on-axis and off-axis neutral beams are injected into DIII-D plasmas that are unstable to reversed shear Alfvén eigenmodes (RSAE) and toroidal Alfvén eigenmodes (TAE). The variations alter the classically expected fast-ion gradient ∇β
f in the plasma interior. Off-axis injection reduces the amplitude of RSAE activity an order of magnitude. Core TAEs are also strongly stabilized. In contrast, at larger minor radius, the fast-ion gradient is similar for on- and off-axis injection and switching the angle of injection has a weaker effect on the stability of TAEs. The average mode amplitude correlates strongly with the classically expected profile but the measured profile relaxes to similar values independent of the fraction of off-axis beams. The observations agree qualitatively with a 'critical-gradient' model of fast-ion transport. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
43. Properties of Alfvén eigenmodes in the Toroidal Alfvén Eigenmode range on the National Spherical Torus Experiment-Upgrade.
- Author
-
Podestà, M., Gorelenkov, N. N., White, R. B., Fredrickson, E. D., Gerhardt, S. P., and Kramer, G. J.
- Subjects
- *
PLASMA Alfven waves , *TOROIDAL plasma , *TORUS , *PHYSICS experiments , *PLASMA beam injection heating , *COSMIC magnetic fields - Abstract
A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with different tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfvén Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic field with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modifications of the Alfvén continuum result in a frequency up-shift and a broadening of the radial mode structure. The latter effect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable with ion Landau damping representing the dominant damping mechanism. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
44. Role of Alfvén instabilities in energetic ion transport.
- Author
-
Bernabei, S., Gorelenkov, N. N., Budny, R., Fredrickson, E. D., Hosea, J. C., Majeski, R., Phillips, C. K., and Wilson, J. R.
- Published
- 1999
- Full Text
- View/download PDF
45. Perturbative study of energetic particle redistribution by Alfvén eigenmodes in ITER.
- Author
-
Gorelenkov, N. N. and White, R. B.
- Subjects
- *
PERTURBATION theory , *PLASMA Alfven waves , *PARTICLES , *MAGNETOHYDRODYNAMICS , *MAGNETIC confinement , *PLASMA physics - Abstract
The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of equilibrium parameter changes in an experiment. In this paper, we examine the effect of toroidal Alfvén eigenmodes (TAE) and reversed shear Alfvén eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes using perturbative linear theory. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over 1% with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma core and not leading to loss. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
46. Stochastic orbit loss of neutral beam ions from NSTX due to toroidal Alfv'en eigenmode avalanches.
- Author
-
Darrow, D. S., Crocker, N., Fredrickson, E. D., Gorelenkov, N. N., Gorelenkova, M., Kubota, S., Medley, S. S., Podestà, M., L. Shi, and White, R. B.
- Subjects
IONS ,NEUTRONS ,NEUTRAL beams ,PLASMA gas research ,SCIENTIFIC experimentation ,PHYSICS research - Abstract
Short toroidal Alfvén eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding centre code that incorporates the plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary and the trajectories along which modes may transport particles extend from the deposition volume to the loss boundary. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
47. Fast-ion energy loss during TAE avalanches in the National Spherical Torus Experiment.
- Author
-
Fredrickson, E. D., Crocker, N. A., Darrow, D. S., Gorelenkov, N. N., Kramer, G. J., Kubota, S., Podesta, M., White, R. B., Bortolon, A., Gerhardt, S. P., Bell, R. E., Diallo, A., LeBlanc, B., Levinton, F. M., and Yuh, H.
- Subjects
IONS ,PLASMA gases ,ENERGY dissipation ,NEUTRONS ,SCIENTIFIC experimentation ,PHYSICS research - Abstract
Strong toroidal Alfvén eigenmode (TAE) avalanches on NSTX, the National Spherical Torus Experiment (Ono et al 2000 Nucl. Fusion 40 557) are typically correlated with drops in the neutron rate in the range 5-15%. In previous studies of avalanches in L-mode plasmas, these neutron drops were found to be consistent with modelled losses of fast ions. Here we expand the study to TAE avalanches in NSTX H-mode plasmas with improved analysis techniques. At the measured TAE mode amplitudes, simulations with the ORBIT code predict that fast ion losses are negligible. However, the simulations predict that the TAE scatter the fast ions in energy, resulting in a small (≈5-6%) drop in fast ion β. The net decrease in energy of the fast ions is sufficient to account for about 50% of the drop in neutron rate, redistribution for ≈40%, and fast ion losses account for only ≈10%. This loss of energy from the fast ion population is comparable to the estimated energy lost by damping from the Alfvén wave during the burst. The previously studied TAE avalanches in L-mode are re-evaluated using an improved calculation of the potential fluctuations in the ORBIT code near the separatrix. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
48. 1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D.
- Author
-
Ghantous, K., Gorelenkov, N. N., Berk, H. L., Heidbrink, W. W., and Van Zeeland, M. A.
- Subjects
- *
QUASILINEARIZATION , *MATHEMATICAL models , *MAGNETOHYDRODYNAMIC waves , *STABILITY (Mechanics) , *PHASE space , *ANALYSIS of variance , *CRITICAL phenomena (Physics) , *DAMPING (Mechanics) - Abstract
We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges #142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and #127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
49. Overview of the physics and engineering design of NSTX upgrade.
- Author
-
Menard, J. E., Gerhardt, S., Bell, M., Bialek, J., Brooks, A., Canik, J., Chrzanowski, J., Denault, M., Dudek, L., Gates, D. A., Gorelenkov, N., Guttenfelder, W., Hatcher, R., Hosea, J., Kaita, R., Kaye, S., Kessel, C., Kolemen, E., Kugel, H., and Maingi, R.
- Subjects
ENGINEERING design ,PHYSICS ,NUCLEAR fusion ,NUCLEAR science ,PLASMA gases ,CONTROLLED fusion - Abstract
The spherical tokamak (ST) is a leading candidate for a Fusion Nuclear Science Facility (FNSF) due to its compact size and modular configuration. The National Spherical Torus eXperiment (NSTX) is a MA-class ST facility in the US actively developing the physics basis for an ST-based FNSF. In plasma transport research, ST experiments exhibit a strong (nearly inverse) scaling of normalized confinement with collisionality, and if this trend holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices. A major motivation for the NSTX Upgrade (NSTX-U) is to span the next factor of 3-6 reduction in collisionality. To achieve this collisionality reduction with equilibrated profiles, NSTX-U will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5 s to 5-8 s. In the area of stability and advanced scenarios, plasmas with higher aspect ratio and elongation, high β
N , and broad current profiles approaching those of an ST-based FNSF have been produced in NSTX using active control of the plasma β and advanced resistive wall mode control. High non-inductive current fractions of 70% have been sustained for many current diffusion times, and the more tangential injection of the 2nd NBI of the Upgrade is projected to increase the NBI current drive by up to a factor of 2 and support 100% non-inductive operation. More tangential NBI injection is also projected to provide non-solenoidal current ramp-up as needed for an ST-based FNSF. In boundary physics, NSTX measures an inverse relationship between the scrape-off layer heat-flux width and plasma current that could unfavourably impact next-step devices. Recently, NSTX has successfully demonstrated substantial heat-flux reduction using a snowflake divertor configuration, and this type of divertor is incorporated in the NSTX-U design. The physics and engineering design supporting NSTX Upgrade is described. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
50. Combined ideal and kinetic effects on reversed shear Alfvén eigenmodes.
- Author
-
Gorelenkov, N. N., Kramer, G. J., and Nazikian, R.
- Subjects
- *
SHEAR (Mechanics) , *MAGNETIC fields , *PLASMA diagnostics , *NUMERICAL analysis , *PLASMA dynamics , *PLASMA diffusion - Abstract
A reversed shear Alfvén eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin , is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.