202 results on '"Gizon, L."'
Search Results
2. The mean solar butterfly diagram and poloidal field generation rate at the surface of the Sun.
- Author
-
Cloutier, S., Cameron, R. H., and Gizon, L.
- Subjects
SOLAR magnetic fields ,SOLAR surface ,SOLAR cycle ,MAGNETIC fields ,INDIVIDUAL differences - Abstract
Context. The difference between individual solar cycles in the magnetic butterfly diagram can mostly be ascribed to the stochasticity of the emergence process. Aims. We aim to obtain the expectation value of the butterfly diagram from observations of four cycles. This allows us to further determine the generation rate of the surface radial magnetic field. Methods. We used data from Wilcox Solar Observatory to generate time-latitude diagrams of the surface radial and toroidal magnetic fields spanning cycles 21–24. We symmetrized them across the equator and cycle-averaged them. From the mean butterfly diagram and surface toroidal field, we then inferred the mean poloidal field generation rate at the surface of the Sun. Results. The averaging procedure removes realization noise from individual cycles. The amount of emerging flux required to account for the evolution of the surface radial field is found to match that provided by the observed surface toroidal field and Joy's law. Conclusions. Cycle-averaging butterfly diagrams removes realization noise and artefacts due to imperfect scale separation and corresponds to an ensemble average that can be interpreted in the mean-field framework. The result can then be directly compared to αΩ-type dynamo models. The Babcock-Leighton α-effect is consistent with observations, a result that can be appreciated only if the observational data are averaged in some way. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Learned infinite elements for helioseismology: Learning transparent boundary conditions for the solar atmosphere.
- Author
-
Fournier, D., Hohage, T., Preuss, J., and Gizon, L.
- Subjects
SOLAR atmosphere ,ATMOSPHERIC layers ,ATMOSPHERIC models ,SOUND waves ,FINITE element method - Abstract
Context. Acoustic waves in the Sun are affected by the atmospheric layers, but this region is often ignored in forward models because it increases the computational cost. Aims. The purpose of this work is to take the solar atmosphere into account without significantly increasing the computational cost. Methods. We solved a scalar-wave equation that describes the propagation of acoustic modes inside the Sun using a finite-element method. The boundary conditions used to truncate the computational domain were learned from the Dirichlet-to-Neumann operator, that is, the relation between the solution and its normal derivative at the computational boundary. These boundary conditions may be applied at any height above which the background medium is assumed to be radially symmetric. Results. We show that learned infinite elements lead to a numerical accuracy similar to the accuracy that is obtained for a traditional radiation boundary condition in a simple atmospheric model. The main advantage of learned infinite elements is that they reproduce the solution for any radially symmetric atmosphere to a very good accuracy at low computational cost. In particular, when the boundary condition is applied directly at the surface instead of at the end of the photosphere, the computational cost is reduced by 20% in 2D and by 60% in 3D. This reduction reaches 70% in 2D and 200% in 3D when the computational domain includes the atmosphere. Conclusions. We emphasize the importance of including atmospheric layers in helioseismology and propose a computationally efficient method to do this. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. A flux-independent increase in outflows prior to the emergence of active regions on the Sun.
- Author
-
Schunker, H, Roland-Batty, W, Birch, A C, Braun, D C, Cameron, R H, and Gizon, L
- Subjects
SOLAR magnetic fields ,SOLAR active regions ,CONVECTIVE flow ,HELIOSEISMOLOGY ,OBSERVATORIES - Abstract
Emerging active regions are associated with convective flows on the spatial scale and lifetimes of supergranules. To understand how these flows are involved in the formation of active regions, we aim to identify where active regions emerge in the supergranulation flow pattern. We computed supergranulation scale flow maps at the surface for all active regions in the Solar Dynamics Observatory Helioseismic Emerging Active Region Survey. We classified each of the active regions into four bins based on the amplitude of their average surface flow divergence at emergence. We then averaged the flow divergence over the active regions in each bin as a function of time. We also considered a corresponding set of control regions. We found that, on average, the flow divergence increases during the day prior to emergence at a rate independent of the amount of flux that emerges. By subtracting the averaged flow divergence of the control regions, we found that active region emergence is associated with a remaining converging flow at 0.5–1 d prior to emergence. This remnant flow, |$\Delta \, \mathrm{div} \, \boldsymbol {v}_{\rm h} = (-4.9 \pm 1.7) \times 10^{-6}\,{\rm s}^{-1}$| , corresponds to a flow speed of 10–20 m s
−1 (an order of magnitude less than supergranulation flows) out to a radius of about 10 Mm. We show that these observational results are qualitatively supported by simulations of a small bipole emerging through the near-surface convective layers of the Sun. The question remains whether these flows are driving the emergence, or are caused by the emergence. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
5. Entropy-calibrated stellar modeling: Testing and improving the use of prescriptions for the entropy of adiabatic convection.
- Author
-
Manchon, L., Deal, M., Goupil, M.-J., Serenelli, A., Lebreton, Y., Klevas, J., Kučinskas, A., Ludwig, H.-G., Montalbán, J., and Gizon, L.
- Subjects
STELLAR evolution ,ATMOSPHERIC models ,MEDICAL prescriptions ,GRAVITY ,TEMPERATURE - Abstract
Context. Modeling the convection process is a long-standing problem in stellar physics. To date, all ad hoc models have relied on a free parameter, α, (among others) that has no real physical justification and is therefore poorly constrained. However, a link exists between this free parameter and the entropy of the stellar adiabat. There are existing prescriptions, derived from 3D stellar atmospheric models, that treat entropy as a function of stellar atmospheric parameters (effective temperature, surface gravity, and chemical composition). This can offer sufficient constraints on α through the development of entropy-calibrated models. However, several questions have arisen as these models are increasingly used with respect to which prescription should be used and whether it ought to be used in its original form, along with the impacts of uncertainties on entropy-calibrated models. Aims. We aim to study the three existing prescriptions in detail and determine which of them demonstrate the most optimal performance and how it should be applied. Methods. We implemented the entropy-calibration method into the stellar evolution code (Cesam2k20) and performed comparisons with the Sun and the α Cen system. In addition, we used data from the CIFIST grid of 3D atmosphere models to evaluate the accuracy of the prescriptions. Results. Of the three entropy prescriptions currently available, we determined the one that has the best functional form for reproducing the entropies of the 3D models. However, the coefficients involved in this formulation must not be taken from the original paper because they were calibrated against a flawed set of entropies. We also demonstrate that the entropy obtained from this prescription should be corrected for the evolving chemical composition and for an entropy offset different between various EoS tables. This must be done following a precise procedure to ensure that the classical parameters obtained from the models are not strongly biased. Finally, we provide a data table with entropy of the adiabat of the CIFIST grid, along with the fits for these entropies. Conclusions. Thanks to a precise examination of entropy-calibrated modeling, we are able to offer our recommendations with respect to which adiabatic entropy prescription to use, how to correct it, and how to implement the method into a stellar evolution code. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Rossby Waves in Astrophysics
- Author
-
Zaqarashvili, T. V., Albekioni, M., Ballester, J. L., Bekki, Y., Biancofiore, L., Birch, A. C., Dikpati, M., Gizon, L., Gurgenashvili, E., Heifetz, E., Lanza, A. F., McIntosh, S. W., Ofman, L., Oliver, R., Proxauf, B., Umurhan, O. M., and Yellin-Bergovoy, R.
- Published
- 2021
- Full Text
- View/download PDF
7. Detecting stellar activity cycles in p-mode travel times: Proof of concept using SOHO/VIRGO solar observations.
- Author
-
Vasilyev, V. and Gizon, L.
- Subjects
- *
STELLAR activity , *SOLAR oscillations , *SOLAR cycle , *SOLAR activity , *ASTEROSEISMOLOGY - Abstract
Context. The 11 yr solar cycle is known to affect the global modes of solar acoustic oscillations. In particular, p mode frequencies increase with solar activity. Aims. We propose a new method to detect the solar cycle from the p-mode autocorrelation function, and we validate this method using VIRGO/SPM photometric time series from solar cycles 23 and 24. Methods. The p-mode autocorrelation function shows multiple wavepackets separated by time lags of ∼123 min. Using a one-parameter fitting method (from local helioseismology), we measure the seismic travel times from each wavepacket up to skip number 40. Results. We find that the travel-time variations due to the solar cycle strongly depend on the skip number, with the strongest signature in odd skips from 17 to 31. Taking the noise covariance into account, the travel-time perturbations can be averaged over all skip numbers to enhance the signal-to-noise ratio. Conclusions. This method is robust to noise, simpler to implement than peak bagging in the frequency domain, and is promising for asteroseismology. We estimate that the activity cycle of a Sun-like star should be detectable with this new method in Kepler-like observations down to a visual magnitude of mK ∼ 11. However, for fainter stars, activity cycles are easier to detect in the photometric variability on rotational timescales. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Stereoscopic disambiguation of vector magnetograms: first applications to SO/PHI-HRT data
- Author
-
Valori, G., Calchetti, D., Vacas, A. Moreno, Pariat, É., Solanki, S. K., Löschl, P., Hirzberger, J., Parenti, S., Albert, K., Jorge, N. Albelo, Álvarez-Herrero, A., Appourchaux, T., Rubio, L. R. Bellot, Rodríguez, J. Blanco, Campos-Jara, A., Feller, A., Gandorfer, A., Parejo, P. García, Germerott, D., Gizon, L., Cama, J. M. Gómez, Guerrero, L., Gutierrez-Marques, P., Kahil, F., Kolleck, M., Korpi-Lagg, A., Suárez, D. Orozco, Pérez-Grande, I., Kilders, E. Sanchis, Schou, J., Schühle, U., Sinjan, J., Staub, J., Strecker, H., Iniesta, J. C. del Toro, Volkmer, R., and Woch, J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Spectropolarimetric reconstructions of the photospheric vector magnetic field are intrinsically limited by the 180$^\circ$-ambiguity in the orientation of the transverse component. So far, the removal of such an ambiguity has required assumptions about the properties of the photospheric field, which makes disambiguation methods model-dependent. The basic idea is that the unambiguous line-of-sight component of the field measured from one vantage point will generally have a non-zero projection on the ambiguous transverse component measured by the second telescope, thereby determining the ``true'' orientation of the transverse field. Such an idea was developed and implemented in the Stereoscopic Disambiguation Method (SDM), which was recently tested using numerical simulations. In this work we present a first application of the SDM to data obtained by the High Resolution Telescope (HRT) onboard Solar Orbiter during the March 2022 campaign, when the angle with Earth was 27 degrees. The method is successfully applied to remove the ambiguity in the transverse component of the vector magnetogram solely using observations (from HRT and from the Helioseismic and Magnetic Imager), for the first time. The SDM is proven to provide observation-only disambiguated vector magnetograms that are spatially homogeneous and consistent. A discussion about the sources of error that may limit the accuracy of the method, and of the strategies to remove them in future applications, is also presented., 32 pages, 12 figures, accepted in A&A on 09/07/2023
- Published
- 2023
9. Direct assessment of SDO/HMI helioseismology of active regions on the Sun's far side using SO/PHI magnetograms
- Author
-
Yang, D., Gizon, L., Barucq, H., Hirzberger, J., Suárez, D. Orozco, Albert, K., Jorge, N. Albelo, Appourchaux, T., Alvarez-Herrero, A., Rodríguez, J. Blanco, Gandorfer, A., Germerott, D., Guerrero, L., Gutierrez-Marques, P., Kahil, F., Kolleck, M., Solanki, S. K., Iniesta, J. C. del Toro, Volkmer, R., Woch, J., Pérez-Grande, I., Kilders, E. Sanchis, Jiménez, M. Balaguer, Rubio, L. R. Bellot, Calchetti, D., Carmona, M., Deutsch, W., Feller, A., Fernandez-Rico, G., Fernández-Medina, A., Parejo, P. García, Blesa, J. L. Gasent, Grauf, B., Heerlein, K., Korpi-Lagg, A., Lange, T., Jiménez, A. López, Maue, T., Meller, R., Vacas, A. Moreno, Müller, R., Nakai, E., Schmidt, W., Schou, J., Schühle, U., Sinjan, J., Staub, J., Strecker, H., Torralbo, I., and Valori, G.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Earth-side observations of solar p modes can be used to image and monitor magnetic activity on the Sun's far side. Here we use magnetograms of the far side obtained by the Polarimetric and Helioseismic Imager (PHI) onboard Solar Orbiter (SO) to directly assess -- for the first time -- the validity of far-side helioseismic holography. We wish to co-locate the positions of active regions in helioseismic images and magnetograms, and to calibrate the helioseismic measurements in terms of magnetic field strength. We identify three magnetograms on 18 November 2020, 3 October 2021, and 3 February 2022 displaying a total of six active regions on the far side. The first two dates are from SO's cruise phase, the third from the beginning of the nominal operation phase. We compute contemporaneous seismic phase maps for these three dates using helioseismic holography applied to time series of Dopplergrams from the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO). Among the six active regions seen in SO/PHI magnetograms, five active regions are identified on the seismic maps at almost the same positions as on the magnetograms. One region is too weak to be detected above the seismic noise. To calibrate the seismic maps, we fit a linear relationship between the seismic phase shifts and the unsigned line-of-sight magnetic field averaged over the active region areas extracted from the SO/PHI magnetograms. SO/PHI provides the strongest evidence so far that helioseismic imaging provides reliable information about active regions on the far side, including their positions, areas, and mean unsigned magnetic field., 10 pages, 9 figures
- Published
- 2023
10. Spectropolarimetric investigation of magnetohydrodynamic wave modes in the photosphere: First results from PHI on board Solar Orbiter
- Author
-
Calchetti, D., Stangalini, M., Jafarzadeh, S., Valori, G., Albert, K., Jorge, N. Albelo, Alvarez-Herrero, A., Appourchaux, T., Jiménez, M. Balaguer, Rubio, L. R. Bellot, Rodríguez, J. Blanco, Feller, A., Gandorfer, A., Germerott, D., Gizon, L., Guerrero, L., Gutierrez-Marques, P., Hirzberger, J., Kahil, F., Kolleck, M., Korpi-Lagg, A., Vacas, A. Moreno, Suárez, D. Orozco, Pérez-Grande, I., Kilders, E. Sanchis, Schou, J., Schühle, U., Sinjan, J., Solanki, S. K., Staub, J., Strecker, H., Iniesta, J. C. del Toro, Volkmer, R., and Woch, J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
In November 2021, Solar Orbiter started its nominal mission phase. The remote-sensing instruments on board the spacecraft acquired scientific data during three observing windows surrounding the perihelion of the first orbit of this phase. The aim of the analysis is the detection of magnetohydrodynamic (MHD) wave modes in an active region by exploiting the capabilities of spectropolarimetric measurements. The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) on board the Solar Orbiter acquired a high-cadence data set of an active region. This is studied in the paper. B-$\omega$ and phase-difference analyses are applied on line-of-sight velocity and circular polarization maps and other averaged quantities. We find that several MHD modes at different frequencies are excited in all analysed structures. The leading sunspot shows a linear dependence of the phase lag on the angle between the magnetic field and the line of sight of the observer in its penumbra. The magnetic pore exhibits global resonances at several frequencies, which are also excited by different wave modes. The SO/PHI measurements clearly confirm the presence of magnetic and velocity oscillations that are compatible with one or more MHD wave modes in pores and a sunspot. Improvements in modelling are still necessary to interpret the relation between the fluctuations of different diagnostics.
- Published
- 2023
11. Asteroseismology of Solar-Type Stars with K2 : Detection of Oscillations in C1 Data
- Author
-
Chaplin, W. J., Lund, M. N., Handberg, R., Basu, S., Buchhave, L. A., Campante, T. L., Davies, G. R., Huber, D., Latham, D. W., Latham, C. A., Serenelli, A., Antia, H. M., Appourchaux, T., Ball, W. H., Benomar, O., Casagrande, L., Christensen-Dalsgaard, J., Coelho, H. R., Creevey, O. L., Elsworth, Y., García, R. A., Gaulme, P., Hekker, S., Kallinger, T., Karoff, C., Kawaler, S. D., Kjeldsen, H., Lundkvist, M. S., Marcadon, F., Mathur, S., Miglio, A., Mosser, B., Régulo, C., Roxburgh, I. W., Silva Aguirre, V., Stello, D., Verma, K., White, T. R., Bedding, T. R., Barclay, T., Buzasi, D. L., Dehuevels, S., Gizon, L., Houdek, G., Howell, S. B., Salabert, D., and Soderblom, D. R.
- Published
- 2015
- Full Text
- View/download PDF
12. ESA's PLATO mission: Development status and upcoming milestones
- Author
-
Heras, Ana, Rauer, H, Aerts, C., Deleuil, M, Gizon, L., Goupil, M.J., Mas-Hesse, J. Miguel, Pagano, I., Piotto, G., Pollacco, D. L., Ragazzoni, R., Ramsay, G., and Udry, S.
- Subjects
M3 mission ,Exoplanets ,PLATO - Published
- 2022
13. HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science
- Author
-
Erdélyi, R. Damé, L. Fludra, A. Mathioudakis, M. Amari, T. Belucz, B. Berrilli, F. Bogachev, S. Bolsée, D. Bothmer, V. Brun, S. Dewitte, S. de Wit, T.D. Faurobert, M. Gizon, L. Gyenge, N. Korsós, M.B. Labrosse, N. Matthews, S. Meftah, M. Morgan, H. Pallé, P. Rochus, P. Rozanov, E. Schmieder, B. Tsinganos, K. Verwichte, E. Zharkov, S. Zuccarello, F. Wimmer-Schweingruber, R.
- Subjects
Physics::Space Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Recent solar physics missions have shown the definite role of waves and magnetic fields deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically dominant changes occur. HiRISE (High Resolution Imaging and Spectroscopy Explorer), the ambitious new generation ultra-high resolution, interferometric, and coronagraphic, solar physics mission, proposed in response to the ESA Voyage 2050 Call, would address these issues and provide the best-ever and most complete solar observatory, capable of ultra-high spatial, spectral, and temporal resolution observations of the solar atmosphere, from the photosphere to the corona, and of new insights of the solar interior from the core to the photosphere. HiRISE, at the L1 Lagrangian point, would provide meter class FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, magnetic fields measurements, and ambitious and comprehensive coronagraphy by a remote external occulter (two satellites formation flying 375 m apart, with a coronagraph on a chaser satellite). This major and state-of-the-art payload would allow us to characterize temperatures, densities, and velocities in the solar upper chromosphere, transition zone, and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy, and, direct coronal magnetic field measurement, thus providing a unique set of tools to understand the structure and onset of coronal heating. HiRISE’s objectives are natural complements to the Parker Solar Probe and Solar Orbiter-type missions. We present the science case for HiRISE which will address: i) the fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; ii) coronal heating roots in the inner corona by ambitious externally-occulted coronagraphy; iii) resolved and global helioseismology thanks to continuity and stability of observing at the L1 Lagrange point; and iv) solar variability and space climate with, in addition, a global comprehensive view of UV variability. © 2022, The Author(s).
- Published
- 2022
14. The PLATO field selection process
- Author
-
Nascimbeni, V., Piotto, G, Börner, Anko, Montalto, M., Marrese, P. M., Cabrera Perez, Juan, Marinoni, S., Aerts, C., Altavilla, G., Benatti, S., Claudi, R., Deleuil, M., Desidera, S., Fabrizio, M., Gizon, L., Goupil, M.J., Granata, V., Heras, A. M., Magrin, D., Malavolta, L., Mas-Hesse, J. Miguel, Ortolani, S., Pagano, I., Pollacco, D., Prisinzano, L., Ragazzoni, R., Ramsay, G., Rauer, H, and Udry, S.
- Subjects
photometric ,detection ,astronomical databases ,planetary systems ,catalogs ,fundamental parameters - Published
- 2022
15. Magnetic Flux Transport at the Solar Surface
- Author
-
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S. K., Gizon, L., and Upton, L.
- Published
- 2014
- Full Text
- View/download PDF
16. The PLATO 2.0 mission
- Author
-
Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-Dalsgaard, J., Deleuil, M., Gizon, L., Goupil, M.-J., Güdel, M., Janot-Pacheco, E., Mas-Hesse, M., Pagano, I., Piotto, G., Pollacco, D., Santos, Ċ., Smith, A., Suárez, J.-C., Szabó, R., Udry, S., Adibekyan, V., Alibert, Y., Almenara, J.-M., Amaro-Seoane, P., Eiff, M. Ammler-von, Asplund, M., Antonello, E., Barnes, S., Baudin, F., Belkacem, K., Bergemann, M., Bihain, G., Birch, A. C., Bonfils, X., Boisse, I., Bonomo, A. S., Borsa, F., Brandão, I. M., Brocato, E., Brun, S., Burleigh, M., Burston, R., Cabrera, J., Cassisi, S., Chaplin, W., Charpinet, S., Chiappini, C., Church, R. P., Csizmadia, Sz., Cunha, M., Damasso, M., Davies, M. B., Deeg, H. J., Díaz, R. F., Dreizler, S., Dreyer, C., Eggenberger, P., Ehrenreich, D., Eigmüller, P., Erikson, A., Farmer, R., Feltzing, S., Oliveira Fialho, F. de, Figueira, P., Forveille, T., Fridlund, M., García, R. A., Giommi, P., Giuffrida, G., Godolt, M., da Silva, J. Gomes, Granzer, T., Grenfell, J. L., Grotsch-Noels, A., Günther, E., Haswell, C. A., Hatzes, A. P., Hébrard, G., Hekker, S., Helled, R., Heng, K., Jenkins, J. M., Johansen, A., Khodachenko, M. L., Kislyakova, K. G., Kley, W., Kolb, U., Krivova, N., Kupka, F., Lammer, H., Lanza, A. F., Lebreton, Y., Magrin, D., Marcos-Arenal, P., Marrese, P. M., Marques, J. P., Martins, J., Mathis, S., Mathur, S., Messina, S., Miglio, A., Montalban, J., Montalto, M., P. F. G. Monteiro, M. J., Moradi, H., Moravveji, E., Mordasini, C., Morel, T., Mortier, A., Nascimbeni, V., Nelson, R. P., Nielsen, M. B., Noack, L., Norton, A. J., Ofir, A., Oshagh, M., Ouazzani, R.-M., Pápics, P., Parro, V. C., Petit, P., Plez, B., Poretti, E., Quirrenbach, A., Ragazzoni, R., Raimondo, G., Rainer, M., Reese, D. R., Redmer, R., Reffert, S., Rojas-Ayala, B., Roxburgh, I. W., Salmon, S., Santerne, A., Schneider, J., Schou, J., Schuh, S., Schunker, H., Silva-Valio, A., Silvotti, R., Skillen, I., Snellen, I., Sohl, F., Sousa, S. G., Sozzetti, A., Stello, D., Strassmeier, K. G., Švanda, M., Szabó, Gy. M., Tkachenko, A., Valencia, D., Van Grootel, V., Vauclair, S. D., Ventura, P., Wagner, F. W., Walton, N. A., Weingrill, J., Werner, S. C., Wheatley, P. J., and Zwintz, K.
- Published
- 2014
- Full Text
- View/download PDF
17. Propagating Linear Waves in Convectively Unstable Stellar Models: A Perturbative Approach
- Author
-
Papini, E., Gizon, L., and Birch, A. C.
- Published
- 2014
- Full Text
- View/download PDF
18. Multichannel Three-Dimensional SOLA Inversion for Local Helioseismology
- Author
-
Jackiewicz, J., Birch, A. C., Gizon, L., Hanasoge, S. M., Hohage, T., Ruffio, J.-B., and Švanda, M.
- Published
- 2012
- Full Text
- View/download PDF
19. Constructing and Characterising Solar Structure Models for Computational Helioseismology
- Author
-
Schunker, H., Cameron, R. H., Gizon, L., and Moradi, H.
- Published
- 2011
- Full Text
- View/download PDF
20. Constructing Semi-Empirical Sunspot Models for Helioseismology
- Author
-
Cameron, R. H., Gizon, L., Schunker, H., and Pietarila, A.
- Published
- 2011
- Full Text
- View/download PDF
21. 3D Numerical Simulations of f-Mode Propagation Through Magnetic Flux Tubes
- Author
-
Daiffallah, K., Abdelatif, T., Bendib, A., Cameron, R., and Gizon, L.
- Published
- 2011
- Full Text
- View/download PDF
22. Modeling the Subsurface Structure of Sunspots
- Author
-
Moradi, H., Baldner, C., Birch, A. C., Braun, D. C., Cameron, R. H., Duvall, Jr., T. L., Gizon, L., Haber, D., Hanasoge, S. M., Hindman, B. W., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, P., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H., Spruit, H. C., Strassmeier, K. G., Thompson, M. J., and Zharkov, S.
- Published
- 2010
- Full Text
- View/download PDF
23. Helioseismology of Sunspots: A Case Study of NOAA Region 9787
- Author
-
Gizon, L., Schunker, H., Baldner, C. S., Basu, S., Birch, A. C., Bogart, R. S., Braun, D. C., Cameron, R., Duvall, Jr., T. L., Hanasoge, S. M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M. J., and Zharkov, S.
- Published
- 2009
- Full Text
- View/download PDF
24. POLAR investigation of the Sun—POLARIS
- Author
-
Appourchaux, T., Liewer, P., Watt, M., Alexander, D., Andretta, V., Auchère, F., D’Arrigo, P., Ayon, J., Corbard, T., Fineschi, S., Finsterle, W., Floyd, L., Garbe, G., Gizon, L., Hassler, D., Harra, L., Kosovichev, A., Leibacher, J., Leipold, M., Murphy, N., Maksimovic, M., Martinez-Pillet, V., Matthews, B. S. A., Mewaldt, R., Moses, D., Newmark, J., Régnier, S., Schmutz, W., Socker, D., Spadaro, D., Stuttard, M., Trosseille, C., Ulrich, R., Velli, M., Vourlidas, A., Wimmer-Schweingruber, C. R., and Zurbuchen, T.
- Published
- 2009
- Full Text
- View/download PDF
25. High-Resolution Mapping of Flows in the Solar Interior: Fully Consistent OLA Inversion of Helioseismic Travel Times
- Author
-
Jackiewicz, J., Gizon, L., and Birch, A. C.
- Published
- 2008
- Full Text
- View/download PDF
26. Helioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation
- Author
-
Cameron, R., Gizon, L., and Jr. Duvall, T. L.
- Published
- 2008
- Full Text
- View/download PDF
27. Evolution of dipolar mixed-mode coupling factor in red giant stars: impact of buoyancy spike.
- Author
-
Jiang, C, Cunha, M, Christensen-Dalsgaard, J, Zhang, Q S, and Gizon, L
- Subjects
RED giants ,BUOYANCY ,STELLAR structure ,STELLAR oscillations ,FREQUENCIES of oscillating systems - Abstract
Mixed modes observed in red giants allow for investigation of the stellar interior structures. One important feature in these structures is the buoyancy spike caused by the discontinuity of the chemical gradient left behind during the first dredge-up. The buoyancy spike emerges at the base of the convective zone in low-luminosity red giants and later becomes a glitch when the g-mode cavity expands to encompass the spike. Here, we study the impact of the buoyancy spike on the dipolar mixed modes using stellar models with different properties. We find that the applicability of the asymptotic formalisms for the coupling factor, q , varies depending on the location of the evanescent zone, relative to the position of the spike. Significant deviations between the value of q inferred from fitting the oscillation frequencies and either of the formalisms proposed in the literature are found in models with a large frequency separation in the interval 5–15 μHz, with evanescent zones located in a transition region that may be thin or thick. However, it is still possible to reconcile q with the predictions from the asymptotic formalisms, by choosing which formalism to use according to the value of q. For stars approaching the luminosity bump, the buoyancy spike becomes a glitch and strongly affects the mode frequencies. Fitting the frequencies without accounting for the glitch leads to unphysical variations in the inferred q , but we show that this is corrected when properly accounting for the glitch in the fitting. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
28. Faculae Cancel out on the Surfaces of Active Suns.
- Author
-
Nèmec, N.-E., Shapiro, A. I., Işık, E., Sowmya, K., Solanki, S. K., Krivova, N. A., Cameron, R. H., and Gizon, L.
- Published
- 2022
- Full Text
- View/download PDF
29. The Solar Orbiter Science Activity Plan
- Author
-
Zouganelis, I., De Groof, A., Walsh, A., Williams, D., Müller, D., St Cyr, O., Auchère, F., Berghmans, D., Fludra, A., Horbury, T., Howard, R., Krucker, S., Maksimovic, M., Owen, C., Rodríguez-Pacheco, J., Romoli, M., Solanki, S., Watson, C., Sanchez, L., Lefort, J., Osuna, P., Gilbert, H., Nieves-Chinchilla, T., Abbo, L., Alexandrova, O., Anastasiadis, A., Andretta, V., Antonucci, E., Appourchaux, T., Aran, A., Arge, C., Aulanier, G., Baker, D., Bale, S., Battaglia, M., Bellot Rubio, L., Bemporad, A., Berthomier, M., Bocchialini, K., Bonnin, X., Brun, A., Bruno, R., Buchlin, E., Büchner, J., Bucik, R., Carcaboso, F., Carr, R., Carrasco-Blázquez, I., Cecconi, B., Cernuda Cangas, I., Chen, C., Chitta, L., Chust, T., Dalmasse, K., D’Amicis, R., Da Deppo, V., De Marco, R., Dolei, S., Dolla, L., Dudok de Wit, T., Van Driel-Gesztelyi, L., Eastwood, J., Espinosa Lara, F., Etesi, L., Fedorov, A., Félix-Redondo, F., Fineschi, S., Fleck, B., Fontaine, D., Fox, N., Gandorfer, A., Génot, V., Georgoulis, M., Gissot, S., Giunta, A., Gizon, L., Gómez-Herrero, R., Gontikakis, C., Graham, G., Green, L., Grundy, T., Haberreiter, M., Harra, L., Hassler, D., Hirzberger, J., Ho, G., Hurford, G., Innes, D., Issautier, K., James, A., Janitzek, N., Janvier, M., Jeffrey, N., Jenkins, J., Khotyaintsev, Y., Klein, K.-L., Kontar, E., Kontogiannis, I., Krafft, C., Krasnoselskikh, V., Kretzschmar, M., Labrosse, N., Lagg, A., Landini, F., Lavraud, B., Leon, I., Lepri, S., Lewis, G., Liewer, P., Linker, J., Livi, S., Long, D., Louarn, P., Malandraki, O., Maloney, S., Martinez-Pillet, V., Martinovic, M., Masson, A., Matthews, S., Matteini, L., Meyer-Vernet, N., Moraitis, K., Morton, R., Musset, S., Nicolaou, G., Nindos, A., O’Brien, H., Orozco Suarez, D., Owens, M., Pancrazzi, M., Papaioannou, A., Parenti, S., Pariat, Etienne, Patsourakos, S., Perrone, D., Peter, H., Pinto, R., Plainaki, C., Plettemeier, D., Plunkett, S., Raines, J., Raouafi, N., Reid, H., Retinò, A., Rezeau, L., Rochus, P., Rodriguez, L., Rodriguez-Garcia, L., Roth, M., Rouillard, A., Sahraoui, F., Sasso, C., Schou, J., Schühle, U., Sorriso-Valvo, L., Soucek, J., Spadaro, D., Stangalini, M., Stansby, D., Steller, M., Strugarek, A., Štverák, Š., Susino, R., Telloni, D., Terasa, C., Teriaca, L., Toledo-Redondo, S., del Toro Iniesta, J., Tsiropoula, G., Tsounis, A., Tziotziou, K., Valentini, F., Vaivads, A., Vecchio, A., Velli, M., Verbeeck, C., Verdini, A., Verscharen, D., Vilmer, N., Vourlidas, A., Wicks, R., Wimmer-Schweingruber, R., Wiegelmann, T., Young, P., Zhukov, A., Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
- Published
- 2020
- Full Text
- View/download PDF
30. II. Joy’s law
- Author
-
Schunker, H., Baumgartner, C., Birch, A. C., Cameron, R. H., Braun, D. C., and Gizon, L.
- Subjects
Sun: activity ,Sun: magnetic fields ,Article - Abstract
Context. The tilt of solar active regions described by Joy’s law is essential for converting a toroidal field to a poloidal field in Babcock-Leighton dynamo models. In thin flux tube models the Coriolis force causes what we observe as Joy’s law, acting on east-west flows as they rise towards the surface. Aims. Our goal is to measure the evolution of the average tilt angle of hundreds of active regions as they emerge, so that we can constrain the origins of Joy’s law. Methods. We measured the tilt angle of the primary bipoles in 153 emerging active regions (EARs) in the Solar Dynamics Observatory Helioseismic Emerging Active Region survey. We used line-of-sight magnetic field measurements averaged over 6 h to define the polarities and measure the tilt angle up to four days after emergence. Results. We find that at the time of emergence the polarities are on average aligned east-west, and that neither the separation nor the tilt depends on latitude. We do find, however, that EARs at higher latitudes have a faster north-south separation speed than those closer to the equator at the emergence time. After emergence, the tilt angle increases and Joy’s law is evident about two days later. The scatter in the tilt angle is independent of flux until about one day after emergence, when we find that higher-flux regions have a smaller scatter in tilt angle than lower-flux regions. Conclusions. Our finding that active regions emerge with an east-west alignment is consistent with earlier observations, but is still surprising since thin flux tube models predict that tilt angles of rising flux tubes are generated below the surface. Previously reported tilt angle relaxation of deeply anchored flux tubes can be largely explained by the change in east-west separation. We conclude that Joy’s law is caused by an inherent north-south separation speed present when the flux first reaches the surface, and that the scatter in the tilt angle is consistent with buffeting of the polarities by supergranulation.
- Published
- 2020
31. Seismic tomography of the near solar surface
- Author
-
Gizon, L., Duvall, T. L., and Larsen, R. M.
- Published
- 2000
- Full Text
- View/download PDF
32. Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows
- Author
-
Duvall, Jr., T.L. and Gizon, L.
- Published
- 2000
- Full Text
- View/download PDF
33. Sectoral r modes and periodic RV variations of Sun-like stars
- Author
-
Lanza, A. F., Gizon, L., Zaqarashvili, T. V., Liang, Z. -C., and Rodenbeck, K.
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Radial velocity (RV) measurements are used to search for planets orbiting late-type main-sequence stars and confirm the transiting planets. The most advanced spectrometers are approaching a precision of $\sim 10$ cm/s that implies the need to identify and correct for all possible sources of RV oscillations intrinsic to the star down to this level and possibly beyond. The recent discovery of global-scale equatorial Rossby waves in the Sun, also called r modes, prompted us to investigate their possible signature in stellar RV measurements. R modes are toroidal modes of oscillation whose restoring force is the Coriolis force and propagate in the retrograde direction in a frame that corotates with the star. The solar r modes with azimuthal orders $3 \leq m \lesssim 15$ were identified unambiguously because of their dispersion relation and their long e-folding lifetimes of hundreds of days. Here we simulate the RV oscillations produced by sectoral r modes with $2 \leq m \leq 5$ assuming a stellar rotation period of 25.54 days and a maximum amplitude of the surface velocity of each mode of 2 m/s. This amplitude is representative of the solar measurements, except for the $m=2$ mode which has not yet been observed. Sectoral r modes with azimuthal orders $m=2$ and $3$ would produce RV oscillations with amplitudes of 76.4 and 19.6 cm/s and periods of 19.16 and 10.22 days, respectively, for a star with an inclination of the rotation axis $i=60^{\circ}$. Therefore, they may produce rather sharp peaks in the Fourier spectrum of the radial velocity time series that could lead to spurious planetary detections. Sectoral r~modes may represent a source of confusion in the case of slowly rotating inactive stars that are preferential targets for RV planet search. The main limitation of the present investigation is the lack of observational constraint on the amplitude of the $m=2$ mode on the Sun., 7 pages; 4 figures; 1 table; accepted to Astronomy & Astrophysics
- Published
- 2019
34. Wave-like properties of solar supergranulation
- Author
-
Gizon, L., Duvall, T. L., Jr, and Schou, J.
- Published
- 2003
35. Solar Supergranulation Revealed as a Superposition of Traveling Waves
- Author
-
Gizon, L, Duvall, T. L., Jr, Schou, J, and Oegerle, William
- Subjects
Solar Physics - Abstract
40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.
- Published
- 2002
36. A New Component of Solar Dynamics: North-South Diverging Flows Migrating toward the Equator with an 11 Year Period
- Author
-
Beck, J. G, Gizon, L, Duvall, Thomas L., Jr, and Oegerle, William R
- Subjects
Solar Physics - Abstract
Time-distance helioseismology analysis of dopplergrams provides maps of torsional oscillations and meridional flows. Meridional flow maps show a time-varying component that has a banded structure which matches the torsional oscillations with an equatorward migration over the solar cycle. The time-varying component of meridional flow consists of a flow diverging from the dominant latitude of magnetic activity. These maps are compared with other torsional oscillation maps and with magnetic flux maps, showing a strong correlation with active latitudes. These results demonstrate a strong link between the time-varying component of the meridional flow and the torsional oscillations.
- Published
- 2002
37. Radiative Transfer with Opacity Distribution Functions: Application to Narrowband Filters.
- Author
-
Anusha, L. S., Shapiro, A. I., Witzke, V., Cernetic, M., Solanki, S. K., and Gizon, L.
- Published
- 2021
- Full Text
- View/download PDF
38. Autocorrelation of the Ground Vibrations Recorded by the SEIS‐InSight Seismometer on Mars.
- Author
-
Compaire, N., Margerin, L., Garcia, R. F., Pinot, B., Calvet, M., Orhand‐Mainsant, G., Kim, D., Lekic, V., Tauzin, B., Schimmel, M., Stutzmann, E., Knapmeyer‐Endrun, B., Lognonné, P., Pike, W. T., Schmerr, N., Gizon, L., and Banerdt, W. B.
- Subjects
SOIL vibration ,MARTIAN surface ,INTERFEROMETRY ,SEISMOMETERS ,SEISMIC waves ,EARTHQUAKES - Abstract
Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single‐station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time‐domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal‐to‐noise ratio analysis and an inter‐comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P‐ and S‐ seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature. Plain Language Summary: The correlation of seismic records is the basis of seismic interferometry methods. These methods use seismic waves, either from ambient vibrations of the planet or from quakes, that are scattered in the medium in order to recover information about the structure between two seismic sensors. The method is implemented to compute the auto‐correlation functions of the three components of the ground motion recorded by the SEIS seismometer. The comparison of the results obtained from earthquake data to the ones obtained from ambient vibrations demonstrates that the ambient seismic vibration is clearly above the self‐noise of SEIS during early night hours around a specific frequency (2.4 Hz). The seismic vibrations appear to be amplified at this frequency by an unknown mechanism. Some seismic energy arrivals appear consistently in the auto‐correlation functions, at specific propagation times, independent of the data sets and processing parameters tested. These arrivals are interpreted as vertically propagating seismic waves which are reflected on top of crustal layers. Their propagation times can be used to constrain a model of Mars crustal structure. Key Points: Autocorrelation functions (ACFs) of SEIS ambient vibrations and seismic events are computed and validated by intercomparisonThe stability of autocorrelations at 2.4 Hz resonance favor an excitation by a diffuse seismic wavefieldVarious arrivals are observed in ACFs and interpreted as seismic reflections on internal discontinuities [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
39. Erratum to: Helioseismology of Sunspots: A Case Study of NOAA Region 9787
- Author
-
Gizon, L., Schunker, H., Baldner, C. S., Basu, S., Birch, A. C., Bogart, R. S., Braun, D. C., Cameron, R., Duvall, Jr., T. L., Hanasoge, S. M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M. J., and Zharkov, S.
- Published
- 2010
- Full Text
- View/download PDF
40. Power spectrum of turbulent convection in the solar photosphere.
- Author
-
Yelles Chaouche, L., Cameron, R. H., Solanki, S. K., Riethmüller, T. L., Anusha, L. S., Witzke, V., Shapiro, A. I., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., van Noort, M., Blanco Rodríguez, J., Del Toro Iniesta, J. C., Orozco Suárez, D., Schmidt, W., Martínez Pillet, V., and Knölker, M.
- Subjects
SOLAR photosphere ,POWER spectra ,PLASMA heating ,SOLAR surface ,TURBULENCE ,SOLAR cycle ,NATURAL heat convection - Abstract
The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two balloon-borne SUNRISE missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations are consistent with each other and exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with a power-law index of ≈ − 2. The unsmeared simulations exhibit a power law that extends over the full range between the integral and Taylor scales with a power-law index of ≈ − 2.25. The smearing, reminiscent of observational conditions, considerably reduces the extent of the power-law-like portion of the power spectra. This suggests that the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index (at the subgranular range) from roughly the optical depth unity layer, that is, the solar surface, to 300 km above it. We propose that the cause of the steepening of the power-law index is the transition from a super- to a subadiabatic region, in which the dominant source of motions is overshooting convection. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below 180 km. Above this height, the gravity work progressively gains importance at all relevant scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law. Radiative heating and cooling of the plasma is shown to play a dominant role in the plasma energetics in this region, which is important in terms of nonadiabatic damping of the convective motions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
41. Acoustic wave propagation through solar granulation: Validity of effective-medium theories, coda waves.
- Author
-
Poulier, P.-L., Fournier, D., Gizon, L., and Duvall, T. L.
- Subjects
SOLAR granulation ,ACOUSTIC wave propagation ,WAVE packets ,BORN approximation ,SOUND waves ,ACOUSTIC models - Abstract
Context. The frequencies, lifetimes, and eigenfunctions of solar acoustic waves are affected by turbulent convection, which is random in space and in time. Since the correlation time of solar granulation and the periods of acoustic waves (∼5 min) are similar, the medium in which the waves propagate cannot a priori be assumed to be time independent. Aims. We compare various effective-medium solutions with numerical solutions in order to identify the approximations that can be used in helioseismology. For the sake of simplicity, the medium is one dimensional. Methods. We consider the Keller approximation, the second-order Born approximation, and spatial homogenization to obtain theoretical values for the effective wave speed and attenuation (averaged over the realizations of the medium). Numerically, we computed the first and second statistical moments of the wave field over many thousands of realizations of the medium (finite-amplitude sound-speed perturbations are limited to a 30 Mm band and have a zero mean). Results. The effective wave speed is reduced for both the theories and the simulations. The attenuation of the coherent wave field and the wave speed are best described by the Keller theory. The numerical simulations reveal the presence of coda waves, trailing the ballistic wave packet. These late arrival waves are due to multiple scattering and are easily seen in the second moment of the wave field. Conclusions. We find that the effective wave speed can be calculated, numerically and theoretically, using a single snapshot of the random medium (frozen medium); however, the attenuation is underestimated in the frozen medium compared to the time-dependent medium. Multiple scattering cannot be ignored when modeling acoustic wave propagation through solar granulation. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
42. Effect of latitudinal differential rotation on solar Rossby waves: Critical layers, eigenfunctions, and momentum fluxes in the equatorial β plane.
- Author
-
Gizon, L., Fournier, D., and Albekioni, M.
- Subjects
- *
ROSSBY waves , *STREAM function , *EIGENFUNCTIONS , *ANGULAR momentum (Mechanics) , *MAGNETOHYDRODYNAMIC waves , *SOLAR cycle , *INVISCID flow ,ROTATION of the Sun - Abstract
Context. Retrograde-propagating waves of vertical vorticity with longitudinal wavenumbers between 3 and 15 have been observed on the Sun with a dispersion relation close to that of classical sectoral Rossby waves. The observed vorticity eigenfunctions are symmetric in latitude, peak at the equator, switch sign near 20°–30°, and decrease at higher latitudes. Aims. We search for an explanation that takes solar latitudinal differential rotation into account. Methods. In the equatorial β plane, we studied the propagation of linear Rossby waves (phase speed c < 0) in a parabolic zonal shear flow, U = − U̅ξ2 < 0 U = − U ¯ ξ 2 < 0 $ U = - \overline{U}\ \xi^2 , where U̅ = 244 U ¯ = 244 $ \overline{U} = 244 $ m s−1, and ξ is the sine of latitude. Results. In the inviscid case, the eigenvalue spectrum is real and continuous, and the velocity stream functions are singular at the critical latitudes where U = c. We add eddy viscosity to the problem to account for wave attenuation. In the viscous case, the stream functions solve a fourth-order modified Orr-Sommerfeld equation. Eigenvalues are complex and discrete. For reasonable values of the eddy viscosity corresponding to supergranular scales and above (Reynolds number 100 ≤ Re ≤ 700), all modes are stable. At fixed longitudinal wavenumber, the least damped mode is a symmetric mode whose real frequency is close to that of the classical Rossby mode, which we call the R mode. For Re ≈ 300, the attenuation and the real part of the eigenfunction is in qualitative agreement with the observations (unlike the imaginary part of the eigenfunction, which has a larger amplitude in the model). Conclusions. Each longitudinal wavenumber is associated with a latitudinally symmetric R mode trapped at low latitudes by solar differential rotation. In the viscous model, R modes transport significant angular momentum from the dissipation layers toward the equator. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
43. The Polarimetric and Helioseismic Imager on Solar Orbiter.
- Author
-
Solanki, S. K., del Toro Iniesta, J. C., Woch, J., Gandorfer, A., Hirzberger, J., Alvarez-Herrero, A., Appourchaux, T., Martínez Pillet, V., Pérez-Grande, I., Sanchis Kilders, E., Schmidt, W., Gómez Cama, J. M., Michalik, H., Deutsch, W., Fernandez-Rico, G., Grauf, B., Gizon, L., Heerlein, K., Kolleck, M., and Lagg, A.
- Subjects
DOPPLER effect ,ELLIPTICAL orbits ,FABRY-Perot interferometers ,SPECTRAL lines ,SOLAR magnetic fields ,SOLAR cycle ,ZEEMAN effect ,POLARIMETRY - Abstract
Aims. This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO
3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
44. Photospheric response to EB-like event
- Author
-
Danilovic, S., Solanki, S. K., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., van Noort, T. L. Riethm��ller M., Rodr��guez, J. Blanco, Iniesta, J. C. Del Toro, Su��rez, D. Orozco, Schmidt, W., Pillet, V. Mart��nez, and Kn��lker, M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics::Space Physics ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper we analyse Sunrise/IMaX data together with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe I 525.02 nm line gives no information on the height where reconnection takes place. It can only give clues about the heating in the aftermath of the reconnection. The information on the magnetic field vector and velocity at this spatial resolution is, however, extremely valuable because it shows what numerical models miss and how they can be improved., accepted in ApJS after minor changes; movies: http://www2.mps.mpg.de/data/outgoing/danilovic/ebs/
- Published
- 2016
45. On the uncertain nature of the core of $\boldsymbol{\alpha}$ Cen A
- Author
-
Bazot, M., Christensen-Dalsgaard, J., Gizon, L., and Benomar, O.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
High-quality astrometric, spectroscopic, interferometric and, importantly, asteroseismic observations are available for $\alpha$ Cen A, which is the closest binary star system to earth. Taking all these constraints into account, we study the internal structure of the star by means of theoretical modelling. Using the Aarhus STellar Evolution Code (ASTEC) and the tools of Computational Bayesian Statistics, in particular a Markov chain Monte Carlo algorithm, we perform statistical inferences for the physical characteristics of the star. We find that $\alpha$ Cen A has a probability of approximately 40% of having a convective core. This probability drops to few percents if one considers reduced rates for the $^{14}$N(p,$\gamma$)$^{15}$O reaction. These convective cores have fractional radii less than 8% when overshoot is neglected. Including overshooting also leads to the possibility of a convective core mostly sustained by the ppII chain energy output. We finally show that roughly 30% of the stellar models describing $\alpha$ Cen A are in the subgiant regime., Comment: 17 pages, 7 figures, accepted for publication in MNRAS
- Published
- 2016
46. MESA meets MURaM
- Author
-
Ball, W. H., Beeck, B., Cameron, R. H., and Gizon, L.
- Subjects
asteroseismology ,stars ,oscillations ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
ontext. Space-based observations of solar-like oscillators have identified large numbers of stars in which many individual mode frequencies can be precisely measured. However, current stellar models predict oscillation frequencies that are systematically affected by simplified modelling of the near-surface layers. Aims. We use three-dimensional radiation hydrodynamics simulations to better model the near-surface equilibrium structure of dwarfs with spectral types F3, G2, K0 and K5, and examine the differences between oscillation mode frequencies computed in stellar models with and without the improved near-surface equilibrium structure. Methods. We precisely match stellar models to the simulations’ gravities and effective temperatures at the surface, and to the temporally- and horizontally-averaged densities and pressures at their deepest points. We then replace the near-surface structure with that of the averaged simulation and compute the change in the oscillation mode frequencies. We also fit the differences using several parametric models currently available in the literature. Results. The surface effect in the stars of solar-type and later is qualitatively similar and changes steadily with decreasing effective temperature. In particular, the point of greatest frequency difference decreases slightly as a fraction of the acoustic cut-off frequency and the overall scale of the surface effect decreases. The surface effect in the hot, F3-type star follows the same trend in scale (i.e. it is larger in magnitude) but shows a different overall variation with mode frequency. We find that a two-term fit using the cube and inverse of the frequency divided by the mode inertia is best able to reproduce the surface terms across all four spectral types, although the scaled solar term and a modified Lorentzian function also match the three cooler simulations reasonably well. Conclusions. Three-dimensional radiation hydrodynamics simulations of near-surface convection can be averaged and combined with stellar structure models to better predict oscillation mode frequencies in solar-like oscillators. Our simplified results suggest that the surface effect is generally larger in hotter stars (and correspondingly smaller in cooler stars) and of similar shape in stars of solar type and cooler. However, we cannot presently predict whether this will remain so when other components of the surface effect are included. peerReviewed
- Published
- 2016
47. A seismic and gravitationally bound double star observed by Kepler
- Author
-
Appourchaux, T., Antia, H. M., Ball, W., Creevey, O., Lebreton, Y., Verma, K., Vorontsov, S., Campante, T. L., Davies, G. R., Gaulme, P., Régulo, C., Horch, E., Howell, S., Everett, M., Ciardi, D., Fossati, L., Miglio, A., Montalbán, J., Chaplin, W. J., García, R. A., and Gizon, L.
- Abstract
Context. Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe stars using asteroseismology. Aims. The derivation of stellar parameters has usually been done with single stars. The aim of the paper is to derive the stellar parameters of a double-star system (HIP 93511), for which an interferometric orbit has been observed along with asteroseismic measurements. Methods. We used a time series of nearly two years of data for the double star to detect the two oscillation-mode envelopes that appear in the power spectrum. Using a new scaling relation based on luminosity, we derived the radius and mass of each star. We derived the age of each star using two proxies: one based upon the large frequency separation and a new one based upon the small frequency separation. Using stellar modelling, the mode frequencies allowed us to derive the radius, the mass, and the age of each component. In addition, speckle interferometry performed since 2006 has enabled us to recover the orbit of the system and the total mass of the system. Results. From the determination of the orbit, the total mass of the system is 2.34_(-0.33)^(+0.45) M_⊙. The total seismic mass using scaling relations is 2.47 ± 0.07 M_⊙. The seismic age derived using the new proxy based upon the small frequency separation is 3.5 ± 0.3 Gyr. Based on stellar modelling, the mean common age of the system is 2.7–3.9 Gyr. The mean total seismic mass of the system is 2.34–2.53 M_⊙ consistent with what we determined independently with the orbit. The stellar models provide the mean radius, mass, and age of the stars as R_A = 1.82−1.87R_⊙, M_A = 1.25−1.39 M_⊙, Age_A = 2.6–3.5 Gyr; R_B = 1.22−1.25 R_⊙, M_B = 1.08−1.14 M_⊙, Age_B = 3.35–4.21 Gyr. The models provide two sets of values for Star A: [1.25–1.27] M_⊙ and [1.34–1.39] M_⊙. We detect a convective core in Star A, while Star B does not have any. For the metallicity of the binary system of Z ≈ 0.02, we set the limit between stars having a convective core in the range [1.14–1.25] M_⊙.
- Published
- 2015
48. Asteroseismology of solar-type stars with K2
- Author
-
Chaplin, W. J., Lund, M. N., Handberg, R., Basu, S., Buchhave, L. A., Campante, T. L., Davies, G. R., Huber, D., Latham, D. W., Latham, C. A., Serenelli, A., Antia, H. M., Appourchaux, T., Ball, W. H., Benomar, O., Casagrande, L., Christensen-Dalsgaard, J., Coelho, H. R., Creevey, O. L., Elsworth, Y., Garc, R. A., Gaulme, P., Hekker, S., Kallinger, T., Karoff, C., Kawaler, S. D., Kjeldsen, H., Lundkvist, M. S., Marcadon, F., Mathur, S., Miglio, A., Mosser, B., R, C., Roxburgh, I. W., Aguirre, V. Silva, Stello, D., Verma, K., White, T. R., Bedding, T. R., Barclay, T., Buzasi, D. L., Deheuvels, S., Gizon, L., Houdek, G., Howell, S. B., Salabert, D., and Soderblom, D. R.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,FOS: Physical sciences ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign\,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around $1000\,\rm \mu Hz$. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of two-and-a-half in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as ${\simeq 2500}\,\rm \mu Hz$ into play as potential asteroseismic targets for K2., Comment: Accepted for publication in PASP; 16 pages, 2 figures
- Published
- 2015
49. Pinsker estimators for local helioseismology
- Author
-
Fournier, D., Gizon, L., Holzke, M., and Hohage, T.
- Subjects
74G75 ,FOS: Mathematics ,Numerical Analysis (math.NA) ,Mathematics - Numerical Analysis - Abstract
A major goal of helioseismology is the three-dimensional reconstruction of the three velocity components of convective flows in the solar interior from sets of wave travel-time measurements. For small amplitude flows, the forward problem is described in good approximation by a large system of convolution equations. The input observations are highly noisy random vectors with a known dense covariance matrix. This leads to a large statistical linear inverse problem. Whereas for deterministic linear inverse problems several computationally efficient minimax optimal regularization methods exist, only one minimax-optimal linear estimator exists for statistical linear inverse problems: the Pinsker estimator. However, it is often computationally inefficient because it requires a singular value decomposition of the forward operator or it is not applicable because of an unknown noise covariance matrix, so it is rarely used for real-world problems. These limitations do not apply in helioseismology. We present a simplified proof of the optimality properties of the Pinsker estimator and show that it yields significantly better reconstructions than traditional inversion methods used in helioseismology, i.e.\ Regularized Least Squares (Tikhonov regularization) and SOLA (approximate inverse) methods. Moreover, we discuss the incorporation of the mass conservation constraint in the Pinsker scheme using staggered grids. With this improvement we can reconstruct not only horizontal, but also vertical velocity components that are much smaller in amplitude.
- Published
- 2015
50. The EChO science case
- Author
-
Tinetti, G., Drossart, P., Eccleston, P., Hartogh, P., Isaak, K., Linder, M., Lovis, C., Micela, G., Olliver, M., Puig, L., Ribas, I., De Sio, A., Frith, J., Justtanot, K., Showman, A., Alard, C., Yurchenko, S. N., Parviainen, H., Fouqué, P., Oliva, E., Bordé, P., Balado, A., Varley, R., Di Giorgio, A., Griffin, M., Maillard, J. P., Maggio, A., Lellouch, E., Strazzulla, G., Villaver, E., Griffith, C., Stamper, R., Amado, P. J., Rezac, L., Laken, B., Hargrave, P., Orton, G., Thompson, S., Morales, J. C., Wright, G., Massi, F., Lundgaard Rasmussen, I., Altieri, F., Covino, E., Coustenis, A., Moses, J., Lithgow Bertelloni, C., Demangeon, O., Fletcher, L., Morales Calderón, M., Lo Cicero, U., López Puertas, M., Capria, M. T., Danielski, C., Luntzer, A., Bulgarelli, A., González Hernández, J., Jacquemoud, S., MacTavish, C., Mall, U., Christian Jessen, N., Sanromá, E., Femenía Castella, B., Rocchetto, M., Miles Paez, P., Allard, F., Aylward, A., Leconte, J., Palla, F., White, G., Malaguti, G., Cavarroc, C., Lammer, H., Leto, G., Batista, V., Adybekian, V., Readorn, K., Polichtchouk, I., Petrov, R., García Piquer, A., Pancrazzi, M., Gómez Leal, I., Israelian, G., Rebolo López, R., Peralta, J., Giro, E., Tecsa, M., Haigh, J., Moro Martín, A., Pezzuto, S., Piskunov, N., Agnor, C., Hollis, M., Radioti, A., De Kok, R., Gear, W., Eymet, V., Achilleos, N., Koskinen, T., Maurin, A. S., Rank Lüftinger, T., Barlow, M., Figueira, P., Affer, L., Viti, S., Machado, P., Vakili, F., Burston, R., González Merino, B., Dominic, C., Dorfi, E., Smith, A., Sitek, P., Sánchez Lavega, A., Kerschbaum, F., Hoogeeven, R., Ballerini, P., Filacchione, G., Rodler, F., Stixrude, L., Parmentier, V., Del Val Borro, M., Vandenbussche, B., Tingley, B. W., Deeg, H. J., Tabernero, H. M., Shore, S., Fossey, S., Alonso Floriano, F. J., Santos, N., Tozzi, A., Kipping, D., Maruquette, J. B., Trifoglio, M., Scandaratio, G., Scuderi, S., Hébrard, E., Lodieu, N., Forget, F., Gustin, J., Poretti, E., Murgas Alcaino, F., Sicardy, B., Stiepen, A., Hubert, B., Grodent, D., Magnes, W., Tennyson, J., Temple, J., Galand, M., Barton, E. J., Winter, B., Valdivieso, M. L., Cordier, D., Heredero, R. L., Barrado, D., Mueller Wodarg, I., Giani, E., Correira, A., Widemann, T., Ward Thompson, D., Montañés Rodríguez, P., Moya Bedon, A., Venot, O., Prinja, R., Pinfield, D., Waldmann, I., Morello, G., Lim, T., Pallé, E., Waters, R., Wawer, P., Lognonné, P., Pietrzak, R., Fernández Hernández, Maite, Winek, W., Andersen, A., Monteiro, M., Liu, S. J., Rengel, M., Tanga, P., Yelle, R., Barstow, J. K., Maldonado, J., Irshad, R., Nelson, R., Colomé, J., De Witt, J., Lanza, N., Glasse, A., Coudé du Foresto, V., Branduardi Raymont, G., Beaulieu, J. P., Claudi, R., García López, Ramón, Eales, S., López Valverde, M. A., Turrini, D., Vinatier, S., Crook, J., Damasso, M., Ramos Zapata, G., Kovács, G., Banaszkiewicz, M., Focardi, M., Mauskopf, P., Guedel, M., Rebordao, J., Stolarski, M., Adriani, A., Norgaard Nielsen, H. U., Selig, A., Peña Ramírez, K. Y., Schmider, F. X., Baffa, C., Piccioni, G., Pantin, E., Bowles, N., Hornstrup, A., Pilat Lohinger, E., Buchhave, L. A., Soret, L., Börne, P., López Morales, M., Medvedev, A., Gesa, L., Jones, H., Pérez Hoyos, S., Gerard, J. C., Bellucci, G., Morais, H., Álvarez Iglesias, C. A., Abe, L., Pinsard, F., Tessenyi, M., Blecka, M., Wawrzaszk, A., Middleton, K., Martín Torres, J., Cho, J., Berry, D., Rataj, M., Schrader, J. R., Scholz, A., Watkins, C., Abreu, M., Testi, L., Decin, L., Sánz Forcada, J., Sozzetti, A., Lagage, P. O., Ade, P., Alcala, J., Sousa, S., Espinoza Contreras, M., Swinyard, B., Dobrijévic, M., Sánchez Béjar, V. J., Krupp, N., Bakos, G., Chamberlain, S., Chadney, J., Brown, L., Iro, N., Montalto, M., Sethenadh, J., Bouy, H., Ottensamer, R., Kehoe, T., Doel, P., Delgado Mena, E., Read, P., Coates, A., Cecchi Pestellini, C., Guillot, T., Budaj, J., Selsis, F., Jarchow, C., Del Vecchio, C., Cassan, A., Burleigh, M. R., Pagano, I., Ray, T., Gambicorti, L., Biondi, D., Cerulli, R., Ciaravella, A., Watson, D., Deroo, P., Collura, A., Graczyk, R., North, C., Ramos, A. A., Waltham, D., Montes, D., Gianotti, F., Thrastarson, H., Cockell, C., Pace, E., Bryson, I., Gómez, H., Esposito, M., Azzollini, R., Allende Prieto, C., Gillon, M., Fabrizio, N., Rickman, H., Rees, J. M., Pascale, E., Luzzi, D., Bonford, B., Cole, R., Gizon, L., Licandro Goldaracena, J., Agundez, M., Lahav, O., Zapatero Osorio, M. R., Gaulme, P., Encrenaz, T., Heyrovsky, D., Guàrdia, J., Prisinzano, L., Terenzi, L., Swain, M., Grassi, D., Eiroa, C., Maxted, P., Kerins, E., Yung, Y., Irwin, P., Herrero, E., Guio, P., Boisse, I., Claret, A., Kervella, P., Heiter, U., Bézard, B., Cabral, A., Michaut, C., Giuranna, M., Hersant, F., Hueso, R., Savini, G., Snellen, I. A., Charnoz, S., Jones, G., Belmonte Avilés, J. A., Barber, R. J., Wisniowski, T., Morgante, G., University College of London [London] (UCL), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Dpto. de Organización de Empresas, Escuela Técnica Superior de Ingeniería Industrial de Barcelona, Universitat Politècnica de Catalunya [Barcelona] (UPC), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Leicester], University of Leicester, U.S. Army Research Laboratory [Adelphi, MD] (ARL), United States Army (U.S. Army), Royal Observatory Edinburgh (ROE), University of Edinburgh, Departamento de Fisica [Aveiro], Universidade de Aveiro, SRON Netherlands Institute for Space Research (SRON), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Department of Planetary Sciences [Tucson], University of Arizona, Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Lunar and Planetary Laboratory [Tucson] (LPL), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), The Samuel Roberts Noble Foundation, Center for Human-Computer Interaction (HCI), Virginia Tech [Blacksburg], Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Centre for Astrophysics Research [Hatfield], University of Hertfordshire [Hatfield] (UH), ECLIPSE 2015, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [UCL London], Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Universidade de Lisboa = University of Lisbon (ULISBOA), Department of Physics and Astronomy [Uppsala], Uppsala University, Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Mullard Space Science Laboratory (MSSL), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Curie [Paris], Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University [Newcastle], foreign laboratories (FL), CERN [Genève], STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Estrutura de Missão para a Extensão da Plataforma Continental, Estrutura de Missão para a Extensão para a Extensão da Plataforma Continental, Centre for Planetary Sciences [UCL/Birkbeck] (CPS), Queen Mary University of London (QMUL), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Dark Cosmology Centre (DARK), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Computational Science and Engineering Department [Daresbury] (STFC), Science & Technologie Facilities Council, Departamento de Astrofisica [Madrid], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Calar Alto Observatory, Centro Astronómico Hispano-Alemán, Department of Geoscience, Nelson Mandela University [Port Elizabeth], African Earth Observatory Network - Earth Stewardship Science Research Institute (AEON-ESSRI), Animal Genetics, Teagasc - The Agriculture and Food Development Authority (Teagasc), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Université Pierre et Marie Curie - Paris 6 (UPMC), CEA- Saclay (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università di Salerno - Dipartimento di Matematica, Università degli Studi di Salerno = University of Salerno (UNISA), Department of Genetics, University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC)-Carolina Center for the Genome Sciences, Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Department of Molecular Medicine, Università degli Studi di Padova = University of Padua (Unipd), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), ASP 2015, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institute for Astronomy [Vienna], University of Vienna [Vienna], Institut de génétique et microbiologie [Orsay] (IGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Deutsches Forschungszentrum für Künstliche Intelligenz GmbH = German Research Center for Artificial Intelligence (DFKI), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto = University of Porto, Dipartimento di Matematica 'Ulisse Dini', Università degli Studi di Firenze = University of Florence (UniFI), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Rennes (UR), Imperial College London, Laboratoire Hippolyte Fizeau (FIZEAU), School of Physics and Astronomy [Cardiff], Cardiff University, Institut d'Astrophysique et de Géophysique [Liège], Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), University of Bradford, Instituto Universitario de Electroquimica, Universidad de Alicante, Centre de recherche en éducation de Nantes (CREN), Le Mans Université (UM)-Université de Nantes - UFR Lettres et Langages (UFRLL), Université de Nantes (UN)-Université de Nantes (UN), Departamento de Fisica Aplicada [Bilbao], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), NASA Goddard Space Flight Center (GSFC), Onsala Space Observatory (OSO), Chalmers University of Technology [Göteborg], Los Alamos National Laboratory (LANL), Osserv Astrofis Catania, Ist Nazl Astrofis, Centre d'Etude de l'Energie Nucléaire (SCK-CEN), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Consejo Super Invest Cient, Inst Astrofis Andalucia, ES-18080 Granada, Spain, Department of Rheumatology (LEIDEN - Rhumato), Leiden University Medical Center (LUMC), Universiteit Leiden-Universiteit Leiden, Department of Rheumatology (COIMBRA - Rhumato), Universidade de Coimbra [Coimbra], Centre Scientifique et Technique du Bâtiment (CSTB), INAF - Osservatorio Astrofisico di Arcetri (OAA), Université de Bordeaux (UB), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des gaz et des plasmas (LPGP), Pontificia Universidad Católica de Chile (UC), Department of Computer Science [Verona] (UNIVR | DI), Università degli studi di Verona = University of Verona (UNIVR), IEB-UNIVERSITY OF BARCELONA, Departamento de Física e Astronomia [Porto] (DFA/FCUP), Faculdade de Ciências da Universidade do Porto (FCUP), Universidade do Porto = University of Porto-Universidade do Porto = University of Porto, Thüringer Landessternwarte Tautenburg (TLS), Bremer Institut für Produktion und Logistik GmbH (BIBA), Universität Bremen, INAF - Osservatorio Astrofisico di Catania (OACT), Plasmon Nano-optics, Institut de Ciencies Fotoniques [Castelldefels] (ICFO), Royal Holloway [University of London] (RHUL), Hong Kong Government Environmental Protection Department, Water Policy and Science Group, National Space Agencies, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Max Planck Institute for Solar System Research (MPS), European Space Agency (ESA), European Space Agency, Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA) - Grenoble-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Samuel Roberts Noble Foundation, Inc., Universidade de Lisboa (ULISBOA), Polska Akademia Nauk (PAN), University of Oxford [Oxford], Max-Planck-Institut für Sonnensystemforschung (MPS), Institut Curie, University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Nelson Mandela Metropolitan University [Port Elizabeth, South Africa], AEON-ESSRI African Earth Observatory Network — Earth Stewardship Science Research Institute, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Instituto Nacional de Engenharia, Tecnologia e Inovacco (INETI), Physiologie de la reproduction et des comportements [Nouzilly] (PRC), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut Français du Cheval et de l'Equitation [Saumur]-Institut National de la Recherche Agronomique (INRA), Université Francois Rabelais [Tours], Institut Français du Cheval et de l'Equitation, Università degli Studi di Salerno (UNISA), IRTA, Laboratoire d'astrophysique de l'observatoire de Besançon (LAOB), Universita degli Studi di Padova, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Universidade do Porto [Porto], Università degli Studi di Firenze [Firenze], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Department of Earth Sciences, University College London, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Centre interdisciplinaire de recherche, culture, éducation, formation, travail (CIRCEFT), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Station biologique, Centre National de la Recherche Scientifique (CNRS), Dipartimento di Informatica [Verona], Università degli Studi di Verona, Departamento de Física e Astronomia [Porto], UMR5116, Centre Émile Durkheim (CED), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Clinica Neurologica, Università degli Studi di Perugia (UNIPG), Rebordao, J. [0000-0002-7418-0345], Kerschbaum, F. [0000-0001-6320-0980], Abreu, M. [0000-0002-0716-9568], Tabernero, H. [0000-0002-8087-4298], López Puertas, M. [0000-0003-2941-7734], Jacquemoud, S. [0000-0002-1500-5256], Tennyson, J. [0000-0002-4994-5238], Focardi, M. [0000-0002-3806-4283], Leto, G. [0000-0002-0040-5011], Lodieu, N. [0000-0002-3612-8968], Tinetti, G. [0000-0001-6058-6654], Sanroma, E. [0000-0001-8859-7937], Poretti, E. [0000-0003-1200-0473], Deeg, H. [0000-0003-0047-4241], Grassi, D. [0000-0003-1653-3066], Piccioni, G. [0000-0002-7893-6808], Ribas, I. [0000-0002-6689-0312], Coates, A. [0000-0002-6185-3125], García Ramón, J. [0000-0002-8204-6832], Bouy, H. [0000-0002-7084-487X[, Lognonne, P. [0000-0002-1014-920X], Demangeon, O. [0000-0001-7918-0355], Morales, J. C. [0000-0003-0061-518X], Ray, T. [0000-0002-2110-1068], Guio, P. [0000-0002-1607-5862], Tanga, P. [0000-0002-2718-997X], Prisinzano, L. [0000-0002-8893-2210], Barstow, J. [0000-0003-3726-5419], Balado, A. [0000-0003-4268-2516], Lithgow Bertelloni, C. [0000-0003-0924-6587], Barton, E. [0000-0001-5945-9244], Delgado, M. E. [0000-0003-4434-2195], Affer, L. [0000-0001-5600-3778], Ciaravella, A. [0000-0002-3127-8078], Barrado Navascues, D. [0000-0002-5971-9242], Figueira, P. [0000-0001-8504-283X], Covino, E. [0000-0002-6187-6685], Venot, O. [0000-0003-2854-765X], Cabral, A. [0000-0002-9433-871X], Watson, D. [0000-0002-4465-8264], Morales Calderon, M. [0000-0001-9526-9499], Ward Thompson, D. [0000-0003-1140-2761], Rebolo, R. [0000-0003-3767-7085], López Valverde, M. A. [0000-0002-7989-4267], Gillon, M. [0000-0003-1462-7739], Morgante, G. [0000-0001-9234-7412], Zapatero Osorio, M. R. [0000-0001-5664-2852], Bulgarelli, A. [0000-0001-6347-0649], Pena Ramírez, K. [0000-0002-5855-401X], Galand, M. [0000-0001-5797-914X], Pancrazzi, M. [0000-0002-3789-2482], Malaguti, G. [0000-0001-9872-3378], Sánchez Lavega, A. [0000-0001-7234-7634], Waldmann, I. [0000-0002-4205-5267], Kovacs, G. [0000-0002-2365-2330], Guillot, T. [0000-0002-7188-8428], Turrini, D. [0000-0002-1923-7740], Altieri, F. [0000-0002-6338-8300], Bellucci, G. [0000-0003-0867-8679], Baffa, C. [0000-0002-4935-100X], Olivia, E. [0000-0002-9123-0412], Selsis, F. [0000-0001-9619-5356], Scuderi, Salvatore [0000-0002-8637-2109], Hersant, F. [0000-0002-2687-7500], Gear, W. [0000-0001-6789-6196], Damasso, M. [0000-0001-9984-4278], Tizzi, A. [0000-0002-6725-3825], Pinfield, D. [0000-0002-7804-4260], Kipping, D. [0000-0002-4365-7366], Maldonado, J. [0000-0002-4282-1072], Pace, E. [0000-0001-5870-1772], Burleigh, M. [0000-0003-0684-7803], Monteiro, M. [0000-0001-5644-0898], Pilat Lohinger, E. [0000-0002-5292-1923], Chadney, J. [0000-0002-5174-2114], Moro Martín, A. [0000-0001-9504-8426], Claret, A. [0000-0002-4045-8134], Gómez, H. [0000-0003-3398-0052], Maldonado, J. [0000-0002-2218-5689], Michaut, C. [0000-0002-2578-0117], Hornstrup, A. [0000-0002-3363-0936], Scholz, A. [0000-0001-8993-5053], Irwin, P. [0000-0002-6772-384X], Bezard, B. [0000-0002-5433-5661], López Heredero, R. [0000-0002-2197-8388], Sanz Forcada, J. [0000-0002-1600-7835], Danielski, C. [0000-0002-3729-2663], Sousa, S. [0000-0001-9047-2965], Medved, A. [0000-0003-2713-8977], Bakos, G. [0000-0001-7204-6727], Ade, P. [0000-0002-5127-0401], Vandenbussche, B. [0000-0002-1368-3109], Martín Torres, J. [0000-0001-6479-2236], Correira, A. [0000-0002-8946-8579], Haigh, J. [0000-0001-5504-4754], Scandariato, G. [0000-0003-2029-0626], Guedel, M. [0000-0001-9818-0588], Sánchez Bejar, V. [0000-0002-5086-4232], Rodríguez, P. [0000-0002-6855-9682], Piskunov, N. [0000-0001-5742-7767], Adibekyan, V. [0000-0002-0601-6199], Pérez Hoyos, S. [0000-0001-9797-4917], Kervella, P. [0000-0003-0626-1749], Pascale, E. [0000-0002-3242-8154], Claudi, R. [0000-0001-7707-5105], Filacchione, G. [0000-0001-9567-0055], Rickman, H. [0000-0002-9603-6619], Amado, P. J. [0000-0002-8388-6040], Maggio, A. [0000-0001-5154-6108], Agundez, M. [0000-0003-3248-3564], Montes, D. [0000-0002-7779-238X], Fletcher, L. [0000-0001-5834-9588], Stixrude, L. [0000-0003-3778-2432], Morais, M. H. [0000-0001-5333-2736], Hueso, R. [0000-0003-0169-123X], Yurchenko, S. [0000-0001-9286-9501], Rataj, M. [0000-0002-2978-9629], Pérez Hoyos, S. [0000-0002-2587-4682], Santos, N. [0000-0003-4422-2919], Peralta, J. [0000-0002-6823-1695], Budaj, J. [0000-0002-9125-7340], Barlow, M. [0000-0002-3875-1171], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universidade do Porto, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), University of Verona (UNIVR), Universidade do Porto-Universidade do Porto, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université de Nantes - UFR Lettres et Langages (UFRLL), Université de Nantes (UN)-Université de Nantes (UN)-Le Mans Université (UM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence [Firenze], COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, University College of London [London] ( UCL ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Max Planck Institute for Solar System Research ( MPS ), School of Physics & Astronomy, European Space Agency ( ESA ), INAF - Osservatorio Astronomico di Palermo ( OAPa ), Istituto Nazionale di Astrofisica ( INAF ), Laboratoire des technologies de la microélectronique ( LTM ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation ( IMEP-LAHC ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Universidad Politécnica de Cataluña, U.S. Army Research Laboratory [Adelphi, MD] ( ARL ), United States Army ( U.S. Army ), Royal Observatory Edinburgh ( ROE ), SRON Netherlands Institute for Space Research ( SRON ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Joseph Louis LAGRANGE ( LAGRANGE ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Lunar and Planetary Laboratory [Tucson], Space Research Institute of Austrian Academy of Sciences ( IWF ), Austrian Academy of Sciences ( OeAW ), Centre de Recherche Astrophysique de Lyon ( CRAL ), École normale supérieure - Lyon ( ENS Lyon ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Center for Human-Computer Interaction ( HCI ), Istituto di Astrofisica e Planetologia Spaziali ( IAPS ), University of Hertfordshire [Hatfield] ( UH ), Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Atmosphérique et Planétaire ( LPAP ), Centro de Astronomia e Astrofísica da Universidade de Lisboa ( CAAUL ), Universidade de Lisboa ( ULISBOA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), Mullard Space Science Laboratory ( MSSL ), Max-Planck-Institut für Sonnensystemforschung ( MPS ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Instituut voor Sterrenkunde, Katholieke Universiteit Leuven ( KU Leuven ), foreign laboratories ( FL ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ), Centre for Planetary Sciences [UCL/Birkbeck] ( CPS ), Queen Mary University of London ( QMUL ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen ( KU ), Computational Science and Engineering Department [Daresbury] ( STFC ), LAEX, Depto. Astrofísica, Centro de Astrobiología, Nelson Mandela Metropolitan University, Nelson Mandela Metropolitan University [Port Elizabeth, South Africa]-Nelson Mandela Metropolitan University [Port Elizabeth, South Africa], Teagasc, Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Fraunhofer-Institute for Applied Solid-State Physics (IAF), Centro de Astrobiologia [Madrid] ( CAB ), Instituto Nacional de Técnica Aeroespacial ( INTA ) -Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), Instituto Nacional de Engenharia, Tecnologia e Inovacco ( INETI ), INETI, Université Pierre et Marie Curie - Paris 6 ( UPMC ), Physiologie de la reproduction et des comportements [Nouzilly] ( PRC ), Institut National de la Recherche Agronomique ( INRA ) -Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique ( CNRS ), Università degli Studi di Salerno ( UNISA ), The University of North Carolina at Chapel Hill-Carolina Center for the Genome Sciences, Laboratoire d'astrophysique de l'observatoire de Besançon ( LAOB ), Université de Franche-Comté ( UFC ), Universita degli Studi di Padova = University of Padua = Université de Padoue, Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ), Institut de génétique et microbiologie [Orsay] ( IGM ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Deutsches Forschungszentrum für Künstliche Intelligenz GmbH ( DFKI ), Consejo Nacional de Investigaciones Científicas y Técnicas ( CONICET ), Centro de Astrofísica da Universidade do Porto ( CAUP ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ), Laboratoire Hippolyte Fizeau ( FIZEAU ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Istituto di Fisica dello Spazio Interplanetario CNR (IFSI), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de recherche en éducation de Nantes ( CREN ), Université de Nantes ( UN ), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea ( UPV/EHU ), NASA Goddard Space Flight Center ( GSFC ), Onsala Space Observatory ( OSO ), Los Alamos National Laboratory ( LANL ), Centre d'Etude de l'Energie Nucléaire ( SCK-CEN ), Institut de Physique du Globe de Paris ( IPGP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -IPG PARIS-Université Paris Diderot - Paris 7 ( UPD7 ) -Université de la Réunion ( UR ) -Centre National de la Recherche Scientifique ( CNRS ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Department of Rheumatology ( LEIDEN - Rhumato ), Department of Rheumatology ( COIMBRA - Rhumato ), Centre Scientifique et Technique du Bâtiment ( CSTB ), INAF - Osservatorio Astrofisico di Arcetri ( OAA ), Centre interdisciplinaire de recherche, culture, éducation, formation, travail ( CIRCEFT ), Université Paris 8 Vincennes-Saint-Denis ( UP8 ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ), Institut national des sciences de l'Univers ( INSU - CNRS ) -IPG PARIS-Université Paris Diderot - Paris 7 ( UPD7 ) -Université de la Réunion ( UR ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de physique des gaz et des plasmas ( LPGP ), Pontificia Universidad Católica de Chile, Thüringer Landessternwarte Tautenburg ( TLS ), BIBA Bremer Institut für Produktion und Logistik GmbH, Centre Émile Durkheim ( CED ), Université de Bordeaux ( UB ) -Sciences Po-Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ) -Sciences Po-Centre National de la Recherche Scientifique ( CNRS ), INAF - Osservatorio Astrofisico di Catania ( OACT ), Institut de Ciencies Fotoniques [Castelldefels] ( ICFO ), Università di Perugia, Royal Holloway [University of London] ( RHUL ), and Low Energy Astrophysics (API, FNWI)
- Subjects
Astrofísica ,Solar System ,Computer science ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,HOT-JUPITER ATMOSPHERES ,7. Clean energy ,Space missions ,law.invention ,Astronomi, astrofysik och kosmologi ,Planet ,law ,Observatory ,Astronomy, Astrophysics and Cosmology ,Transit (astronomy) ,Atmospheric science ,Exoplanets ,IR astronomy ,Spectroscopy ,Astronomy and Astrophysics ,Space and Planetary Science ,QC ,QB ,Eclipse ,Earth and Planetary Astrophysics (astro-ph.EP) ,education.field_of_study ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Exoplanet ,GIANT PLANETS ,Physical Sciences ,ENERGY-BALANCE ,Astrophysics::Earth and Planetary Astrophysics ,Population ,MU-M ,FOS: Physical sciences ,F500 ,Astronomy & Astrophysics ,Telescope ,INFRARED-EMISSION-SPECTRUM ,education ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,EXTRASOLAR PLANET ATMOSPHERE ,Science & Technology ,Astronomy ,EXOPLANET HD 189733B ,HUBBLE-SPACE-TELESCOPE ,Astronomía ,TRANSMISSION SPECTROSCOPY ,0201 Astronomical And Space Sciences ,13. Climate action ,WATER-VAPOR ,astro-ph.EP ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets. Placing the satellite at L2 provides a cold and stable thermal environment, as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. A 1m class telescope is sufficiently large to achieve the necessary spectro-photometric precision. The spectral coverage (0.5-11 micron, goal 16 micron) and SNR to be achieved by EChO, thanks to its high stability and dedicated design, would enable a very accurate measurement of the atmospheric composition and structure of hundreds of exoplanets., Comment: 50 pages, 30 figures. Experimental Astronomy
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.