1. Understanding disease-associated metabolic changes in human colon epithelial cells using i ColonEpithelium metabolic reconstruction.
- Author
-
Jiang B, Quinn-Bohmann N, Diener C, Nathan VB, Han-Hallett Y, Reddivari L, Gibbons SM, and Baloni P
- Abstract
The colon epithelium plays a key role in the host-microbiome interactions, allowing uptake of various nutrients and driving important metabolic processes. To unravel detailed metabolic activities in the human colon epithelium, our present study focuses on the generation of the first cell-type specific genome-scale metabolic model (GEM) of human colonic epithelial cells, named iColonEpithelium. GEMs are powerful tools for exploring reactions and metabolites at systems level and predicting the flux distributions at steady state. Our cell-type-specific iColonEpithelium metabolic reconstruction captures genes specifically expressed in the human colonic epithelial cells. The iColonEpithelium is also capable of performing metabolic tasks specific to the cell type. A unique transport reaction compartment has been included to allow simulation of metabolic interactions with the gut microbiome. We used iColonEpithelium to identify metabolic signatures associated with inflammatory bowel disease. We integrated single-cell RNA sequencing data from Crohn's Diseases (CD) and ulcerative colitis (UC) samples with the iColonEpithelium metabolic network to predict metabolic signatures of colonocytes between CD and UC compared to healthy samples. We identified reactions in nucleotide interconversion, fatty acid synthesis and tryptophan metabolism were differentially regulated in CD and UC conditions, which were in accordance with experimental results. The iColonEpithelium metabolic network can be used to identify mechanisms at the cellular level, and our network has the potential to be integrated with gut microbiome models to explore the metabolic interactions between host and gut microbiota under various conditions.
- Published
- 2024
- Full Text
- View/download PDF