11 results on '"Gangwar, Ajay"'
Search Results
2. A miniaturized quad-band antenna with slotted patch for WiMAX/WLAN/GSM applications
- Author
-
Gangwar, Ajay Kumar and Alam, Muhmmad Shah
- Published
- 2019
- Full Text
- View/download PDF
3. Spin wave mediated unidirectional vortex core reversal by two orthogonal monopolar field pulses: The essential role of three-dimensional magnetization dynamics.
- Author
-
Noske, Matthias, Stoll, Hermann, Fähnle, Manfred, Gangwar, Ajay, Woltersdorf, Georg, Slavin, Andrei, Weigand, Markus, Dieterle, Georg, Förster, Johannes, Back, Christian H., and Schütz, Gisela
- Subjects
MAGNETIZATION ,SPIN waves ,X-ray microscopy ,MICROMAGNETICS ,FOURIER analysis ,PHASE diagrams - Abstract
Scanning transmission x-ray microscopy is employed to investigate experimentally the reversal of the magnetic vortex core polarity in cylindrical Ni
81 Fe19 nanodisks triggered by two orthogonal monopolar magnetic field pulses with peak amplitude B0, pulse length κ = 60 ps, and delay time Δt in the range from -400 ps to +400 ps between the two pulses. The two pulses are oriented in-plane in the x- and y-directions. We have experimentally studied vortex core reversal as a function of B0 and Δt. The resulting phase diagram shows large regions of unidirectional vortex core switching where the switching threshold is modulated due to resonant amplification of azimuthal spin waves. The switching behavior changes dramatically depending on whether the first pulse is applied in the x- or the y-direction. This asymmetry can be reproduced by three-dimensional micromagnetic simulations but not by two-dimensional simulations. This behavior demonstrates that in contrast to the previous experiments on vortex core reversal, the three-dimensionality in the dynamics is essential here. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
4. Filtering antennas: A technical review.
- Author
-
Gangwar, Ajay Kumar, Alam, Muhammad Shah, Rajpoot, Vivek, and Ojha, Anuj Kumar
- Subjects
- *
ANTENNAS (Electronics) , *DESIGN techniques , *RESONATORS , *AUTHORSHIP , *WORK design , *WIRELESS communications , *RADIO technology - Abstract
Filtering antennas or filtennas realize both antennas and filter functions in a single structure with the sole purpose of reducing losses and size in the design of a radio system. This article presents a comprehensive view of various filtennas design techniques and their types, satisfying the requirements of different wireless communication standards. The codesign and synthesis approaches and multilayer structure, slot/slit, and parasitic elements are the frequently used techniques reported in the literature to date for the filtennas design. The codesign and synthesis approaches need an extra filter in the filtenna's design, thus making it more complex. Whereas multilayer, slot, and parasitic elements do not require additional filters, and help the radio design become compact in size. The individual elements, that is, filter and antenna used in the filtenna are designed by cutting slots, stacking, resonators, or metamaterial structures. There are two broad categories of filtennas, namely, planar and nonplanar. Most of the papers covered in this article are planar, whereas, under the nonplanar category, horn filtennas are analyzed. Performance in each case is compared in terms of size, complexity, and cost. Considering filtennas frequency of operation, they are classified as a single band, multiband, ultra‐wideband, and their MIMO configurations are analyzed to improve the reliability of the wireless radio system. Finally, various types of filtennas are compared, and the design guidelines are elaborated, mainly focusing on their application aspect to achieve more compact radio design solutions. The different techniques related to designing filtennas have been compared, and their glance details are provided for a more realistic assessment of individual techniques used till date. Thus, the authors believe that this review article presents a helpful guiding platform for researchers working on filtenna design. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
5. Phase resolved observation of spin wave modes in antidot lattices.
- Author
-
Groß, Felix, Zelent, Mateusz, Gangwar, Ajay, Mamica, Sławomir, Gruszecki, Paweł, Werner, Matthias, Schütz, Gisela, Weigand, Markus, Goering, Eberhard J., Back, Christian H., Krawczyk, Maciej, and Gräfe, Joachim
- Subjects
SPIN waves ,X-ray microscopy ,DRAGONFLIES - Abstract
Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to < 80 nm × 130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asymmetric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin wave manipulation in magnonic crystals. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Visualizing nanoscale spin waves using MAXYMUS.
- Author
-
Gräfe, Joachim, Weigand, Markus, Van Waeyenberge, Bartel, Gangwar, Ajay, Groß, Felix, Lisiecki, Filip, Rychly, Justyna, Stoll, Hermann, Träger, Nick, Förster, Johannes, Stobiecki, Feliks, Dubowik, Janusz, Klos, Jaroslaw, Krwaczyk, Maciej, Back, Christian H., Goering, Eberhard J., and Schütz, Gisela
- Published
- 2019
- Full Text
- View/download PDF
7. Electrical determination of vortex state in submicron magnetic elements
- Author
-
Gangwar, Ajay
- Subjects
Magnetic Vortex, STXM, AMR, SMF ,ddc:530 ,530 Physik - Abstract
Vortex structures in confined geometries are currently under close scrutiny due to their unique properties associated with their spatial confinement and the non-uniform distribution of the magnetization. The magnetic vortex is characterized by two boolean topological quantities: circulation (clockwise or counterclockwise c = ± 1) of the in-plane magnetization and polarity (up or down, p = ± 1) of the vortex core. These four degenerate states are quite stable and can accelerate the development of more compact and high performance magnetic memory devices. Thus an understanding of their dynamical behavior and a way to electrically detect these states is a major requirement for their development. Progress can be achieved by combining theoretical calculations, micromagnetic simulations and experimental approaches. The phenomenon of spin transfer torque is exploited to excite the lowest frequency (gyro) mode of the vortex core confined in a submicron magnetic (Permalloy - Ni81Fe19) element. The gyrotropic motion of the vortex core leads to a periodic change in the magnetization and hence its resistance: due to the anisotropic magnetoresistance (AMR) effect. This periodic change in resistance combines with the excitation current and generates a periodic homodyne voltage signal. An external static magnetic field is applied to break the symmetry and to rectify the homodyne voltage signal which we measure in a nanovoltmeter. It is found that the sign of the rectified AMR signal depends upon the handedness (cp) of the vortex structure. Micromagnetic simulations provide better understanding and are in good agreement with our experimental results. Additionally, vortex dynamics in these samples is investigated in a Scanning Transmission X-ray Microscope (STXM) with a temporal (< 100 ps) and spatial (~ 30 nm) resolution which allows us to verify the resonance frequency of the magnetic element as well as the power range to excite the vortex core. The AMR based technique thus can be used to detect the circulation and the polarity of the vortex state electrically and could open a route to implement magnetic vortex elements in memory and storage hierarchies. The phenomenon of Spin Motive Force (SMF) has also been studied by micromagnetic simulations. It is found that, in a particular configuration, the SMF signal shows a phase difference of 180 degrees for two polarities of the vortex core, when the voltage probe contacts are located parallel to the excitation rf field direction. No phase shift is observed in the perpendicular case. In addition, a 180 degree phase difference is observed for different circulations of the vortex structure. Therefore, this could also be a possible way to determine polarity and circulation of the magnetic vortex by carefully examining the phase relation of the SMF generated voltage signals. An attempt has also been made to measure the SMF experimentally. However, due to the small expected signal unambiguous detection of SMF was not successful so far., Vortex Strukturen in begrenzten Geometrien werden zur Zeit auf Grund ihrer einzigartigen Eigenschaften, die mit ihrer räumlichen Eingrenzung und der nicht uniformen Magnetisierungsverteilung verbunden sind, genauer untersucht. Der magnetische Vortex ist durch zwei boolsche topologische Größen charakterisiert: die Zirkulation (im Uhrzeigersinn oder entgegen, c = ±1) der Magnetisierungskomponenten in der Ebene und die Polarität (nach oben oder nach unten, p = ±1) des Vortex Kerns. Diese vier entarteten Zustände sind sehr stabil und können die Entwicklung von kompakteren Hochleistungs-Magnetspeichern beschleunigen. Deswegen ist ein Verständnis ihres dynamischen Verhaltens und ein Weg diese Zustände elektrisch zu detektieren eine Hauptvoraussetzung für ihre Weiterentwicklung. Fortschritte könne erzielt werden, indem theoretische Rechnungen, mikromagnetische Simulationen und experimentelle Verfahren kombiniert werden. Das Auftreten von Spin-Transfer-Torque wird dazu genutzt die Mode mit der niedrigsten Frequenz (Gyromode) des Vortex Kerns, der in ein mikrometer großes magnetisches (Permalloy - Ni81Fe19) Element eingegrenzt ist, anzuregen. Die gyrotrope Bewegung des Vortex Kerns führt zu einer periodischen Veränderung der Magnetisierung und damit auch des Widerstands: aufgrund des anisotropen magnetoresistiven Effekts (AMR). Diese periodische Widerstandsänderung kombinert mit dem Anregungsstrom erzeugt ein periodisches homodynes Spannungssignal. Ein externes statisches Magnetfeld wird verwendet um die Symetrie zu brechen und das homodyne Spannungssignal, welches wir mit einem Nanovoltmeter messen, gleichzurichten. Dabei wurde gefunden, dass das gleichgerichtete AMR Signal von der Händigkeit (cp) der Vortex Struktur abhängt. Mikromagnetische Simulationen liefern ein besseres Verständnis und befinden sich in guter übereinstimmung mit unseren experimentellen Ergebnissen. Zusätzlich wird die Vortexdynamik in diesen Proben in einem Raster-Transmissions- Röntgen-Mikroskop (STXM) mit einer zeitlichen Auflösung von weniger als 100 ps und einer räumlichen Auflösung von etwa 30 nm untersucht, was uns erlaubt die Resonanzfrequenz des magnetischen Elements, sowie die Leistung um den Vortex Kern anzuregen, zu verifizieren. Diese Technik, basierend auf dem AMR Effekt kann also benutzt werden um die Zirkulation und die Polarität des Vortex Zustands elektrisch zu detektieren und könnte einen Weg eröffnen um magnetische Vortex Elemente in Speicherhierarchien umzusetzen. Das Phänomen der Spin Motive Force (SMF) wurde ebenfalls mit mikromagnetischen Simulationen untersucht. Es wird gefunden, dass in speziellen Konfigurationen, das SMF Signal eine Phasendifferenz von 180 Grad für die beiden Vortex Kern Polaritäten zeigt, wenn die Spannungsabgriffe parallel zu der Richtung des RF-Anregungsfeldes liegen. Keine Phasenverschiebung wird im senkrechten Fall beobachtet. Zusätzlich wird eine 180 Grad Phasendifferenz für unterschiedliche Zirkulationen der Vortex Struktur beobachtet. Deswegen könnte dies ebenfalls einen möglichen Weg darstellen, die Polarität und Zirkulation des Vortex Kerns zu bestimmen, indem man sorgfältig die Phasenbeziehung der Spannungssignale untersucht, die durch SMF erzeugt werden. Es ist auch ein Versuch unternommen worden SMF experimentell zu messen. Jedoch war die Detektion eines eindeutigen SMF Signals aufgrund der erwarteten kleinen Signalgröße bisher noch nicht erfolgreich.
- Published
- 2015
8. CSRR based folded monopole tri‐band antenna array and its system level evaluation.
- Author
-
Gangwar, Ajay Kumar and Alam, Muhmmad Shah
- Subjects
- *
MONOPOLE antennas , *RESONATORS , *BANDWIDTHS , *ANTENNA arrays , *RESONANCE frequency analysis - Abstract
Abstract: In this article, a folded monopole antenna loaded with complementary split ring resonators (CSRRs) is proposed for tri‐band applications. The two bands of the antenna are generated by the folding of the monopole (first band is caused due to fundamental mode and another due to higher order mode) and CSRRs have been responsible for the third band. By using four such antennas in form of an array, the gain and bandwidth have been improved. The prototype of the antenna array is developed on FR4 substrate and simulated results are experimentally validated. A simplified equivalent circuit model of the antenna has been developed and analyzed to quantify the power loss due to input impedance mismatch at each resonance frequency. By using the EM model of the proposed antenna in the Keysight ADS verification test bench its suitability to operate in the system environment has been confirmed. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Unidirectional sub-100-ps magnetic vortex core reversal.
- Author
-
Noske, Matthias, Gangwar, Ajay, Stoll, Hermann, Kammerer, Matthias, Sproll, Markus, Dieterle, Georg, Weigand, Markus, Fähnle, Manfred, Woltersdorf, Georg, Back, Christian H., and Schütz, Gisela
- Subjects
- *
SPIN waves , *PHASE diagrams , *MICROMAGNETICS , *X-ray microscopy , *TIME-resolved spectroscopy - Abstract
We experimentally demonstrate that unidirectional reversal of the magnetic vortex core polarity is possible by excitation with sub-100-ps-long orthogonal monopolar magnetic pulse sequences in a wide range of pulse lengths and amplitudes. The application of such short digital pulses is a favorable excitation scheme for technological applications. Measured phase diagrams of this unidirectional, spin-wave mediated vortex core reversal are in good qualitative agreement with phase diagrams obtained from micromagnetic simulations. The time dependence of the reversal process, observed by time-resolved scanning transmission x-ray microscopy indicates a switching time of 100 ps and fits well with our simulations. The origin of the asymmetric response to clockwise and counterclockwise excitation which is a prerequisite for reliable unidirectional switching is discussed, based on the gyromode-spin-wave coupling. Situations are found in which a three-dimensional dynamics is important, because a vortex-antivortex pair starts to form close to the core of the original vortex in the lower part of the disk without completing the formation across the whole thickness so that it dissolves later on and does not lead to switching of the original vortex core. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
10. Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode.
- Author
-
Sproll, Markus, Noske, Matthias, Bauer, Hans, Kammerer, Matthias, Gangwar, Ajay, Dieterle, Georg, Weigand, Markus, Stoll, Hermann, Woltersdorf, Georg, Back, Christian H., and Schütz, Gisela
- Subjects
FLUX-line lattice ,MICROMAGNETICS ,SPIN waves ,FREQUENCY response ,FREQUENCY spectra - Abstract
We show, by experiments and micromagnetic simulations in vortex structures, that an active "dual frequency" excitation of both the sub-GHz vortex gyromode and multi-GHz spin waves considerably changes the frequency response of spin wave mediated vortex core reversal. Besides additional minima in the switching threshold, a significant broadband reduction of the switching amplitudes is observed, which can be explained by non-linear interaction between the vortex gyromode and the spin waves. We conclude that the well known frequency spectra of azimuthal spin waves in vortex structures are altered substantially, when the vortex gyromode is actively excited simultaneously. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
11. Three-dimensional Character of the Magnetization Dynamics in Magnetic Vortex Structures: Hybridization of Flexure Gyromodes with Spin Waves.
- Author
-
Noske, Matthias, Stoll, Hermann, Fähnle, Manfred, Gangwar, Ajay, Woltersdorf, Georg, Slavin, Andrei, Weigand, Markus, Dieterle, Georg, Förster, Johannes, Back, Christian H., and Schütz, Gisela
- Subjects
- *
FLUX-line lattice , *MAGNETIZATION , *SPIN waves - Abstract
Three-dimensional linear spin-wave eigenmodes of a vortex-state Permalloy disk are studied by micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation. The simulations confirm that the increase of the disk thickness leads to the appearance of additional exchange-dominated so-called gyrotropic flexure modes having nodes along the disk thickness, and eigenfrequencies that decrease when the thickness is increased. We observe the formation of a gap in the mode spectrum caused by the hybridization of the first flexure mode with one of the azimuthal spin-wave modes of the disk. A qualitative change of the transverse profile of this azimuthal mode is found, demonstrating that in a thick vortex-state disk the influence of the "transverse" and the "azimuthal" coordinates cannot be separated. The three-dimensional character of the eigenmodes is essential to explain the recently observed asymmetries in an experimentally obtained phase diagram of vortex-core reversal in relatively thick Permalloy disks. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.