6 results on '"El-Jawahri R"'
Search Results
2. Derivation of a Provisional, Age-dependent, AIS2+ Thoracic Risk Curve for the THOR50 Test Dummy via Integration of NASS Cases, PMHS Tests, and Simulation Data.
- Author
-
Laituri TR, Henry S, El-Jawahri R, Muralidharan N, Li G, and Nutt M
- Subjects
- Abbreviated Injury Scale, Adult, Age Factors, Aged, Aged, 80 and over, Biomechanical Phenomena, Computer Simulation, Humans, Logistic Models, Male, Middle Aged, Models, Biological, Young Adult, Accidents, Traffic, Cadaver, Manikins, Thoracic Injuries
- Abstract
A provisional, age-dependent thoracic risk equation (or, "risk curve") was derived to estimate moderate-to-fatal injury potential (AIS2+), pertaining to men with responses gaged by the advanced mid-sized male test dummy (THOR50). The derivation involved two distinct data sources: cases from real-world crashes (e.g., the National Automotive Sampling System, NASS) and cases involving post-mortem human subjects (PMHS). The derivation was therefore more comprehensive, as NASS datasets generally skew towards younger occupants, and PMHS datasets generally skew towards older occupants. However, known deficiencies had to be addressed (e.g., the NASS cases had unknown stimuli, and the PMHS tests required transformation of known stimuli into THOR50 stimuli). For the NASS portion of the analysis, chest-injury outcomes for adult male drivers about the size of the THOR50 were collected from real-world, 11-1 o'clock, full-engagement frontal crashes (NASS, 1995-2012 calendar years, 1985-2012 model-year light passenger vehicles). The screening for THOR50-sized men involved application of a set of newly-derived "correction" equations for self-reported height and weight data in NASS. Finally, THOR50 stimuli were estimated via field simulations involving attendant representative restraint systems, and those stimuli were then assigned to corresponding NASS cases (n=508). For the PMHS portion of the analysis, simulation-based closure equations were developed to convert PMHS stimuli into THOR50 stimuli. Specifically, closure equations were derived for the four measurement locations on the THOR50 chest by cross-correlating the results of matched-loading simulations between the test dummy and the age-dependent, Ford Human Body Model. The resulting closure equations demonstrated acceptable fidelity (n=75 matched simulations, R2≥0.99). These equations were applied to the THOR50-sized men in the PMHS dataset (n=20). The NASS and PMHS datasets were combined and subjected to survival analysis with event-frequency weighting and arbitrary censoring. The resulting risk curve--a function of peak THOR50 chest compression and age--demonstrated acceptable fidelity for recovering the AIS2+ chest injury rate of the combined dataset (i.e., IR_dataset=1.97% vs. curve-based IR_dataset=1.98%). Additional sensitivity analyses showed that (a) binary logistic regression yielded a risk curve with nearly-identical fidelity, (b) there was only a slight advantage of combining the small-sample PMHS dataset with the large-sample NASS dataset,, ((c) use of the PMHS-based risk curve for risk estimation of the combined dataset yielded relatively poor performance (194% difference), and (d) when controlling for the type of contact (lab-consistent or not), the resulting risk curves were similar.)
- Published
- 2015
- Full Text
- View/download PDF
3. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.
- Author
-
Ruan JS, El-Jawahri R, Barbat S, Rouhana SW, and Prasad P
- Subjects
- Biomechanical Phenomena, Cadaver, Humans, Accidents, Traffic, Hip physiopathology, Knee physiopathology, Thigh physiopathology
- Abstract
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.
- Published
- 2008
- Full Text
- View/download PDF
4. Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures.
- Author
-
Ruan JS, El-Jawahri R, Rouhana SW, Barbat S, and Prasad P
- Subjects
- Humans, Internationality, Multiple Trauma etiology, Multiple Trauma physiopathology, Multiple Trauma prevention & control, Physical Stimulation adverse effects, Risk Assessment methods, Risk Assessment standards, Risk Factors, Seat Belts, Accidents, Traffic, Biomechanical Phenomena methods, Biomechanical Phenomena standards, Computer Simulation standards, Finite Element Analysis standards, Models, Biological, Physical Stimulation methods
- Abstract
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method. The resulting rating for the human body FE model was 8.5 on a 0 to 10 scale with 8.6-10 being excellent biofidelity. In addition, in order to explore whether there is a dependency of the impact responses of the FE model on different analysis codes, three commercially available analysis codes, namely, LS-DYNA, Pamcrash, and Radioss were used to run the human body FE model. Effects of these codes on biofidelity when compared with ISO-TR9790 data are discussed. Model robustness and numerical issues arising with three different code simulations are also discussed.
- Published
- 2006
- Full Text
- View/download PDF
5. Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model.
- Author
-
Ruan JS, El-Jawahri R, Barbat S, and Prasad P
- Abstract
Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact. Results also indicated that the model exhibited speed sensitive response characteristics and the compressibility of the abdomen significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated finite element human body model can be useful for abdominal injury assessment. Internal organ injuries, which are difficult to detect in experimental studies with human cadavers due to the difficulty of instrumentation, may be more easily identified with a validated finite element model through stress-strain analysis.
- Published
- 2005
- Full Text
- View/download PDF
6. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model.
- Author
-
Ruan J, El-Jawahri R, Chai L, Barbat S, and Prasad P
- Abstract
Human thoracic dynamic responses and injuries associated with frontal impact, side impact, and belt loading were investigated and predicted using a complete human body finite element model for an average adult male. The human body model was developed to study the impact biomechanics of a vehicular occupant. Its geometry was based on the Visible Human Project (National Library of Medicine) and the topographies from human body anatomical texts. The data was then scaled to an average adult male according to available biomechanical data from the literature. The model includes details of the head, neck, ribcage, abdomen, thoracic and lumbar spine, internal organs of the chest and abdomen, pelvis, and the upper and lower extremities. The present study is focused on the dynamic response and injuries of the thorax. The model was validated at various impact speeds by comparing predicted responses with available experimental cadaver data in frontal and side pendulum impacts, as well as belt loading. Model responses were compared with similar individual cadaver tests instead of using cadaver corridors because the large differences between the upper and lower bounds of the corridors may confound the model validation. The validated model was then used to study thorax dynamic responses and injuries in various simulated impact conditions. Parameters that could induce injuries such as force, deflection, and stress were computed from model simulations and were compared with previously proposed thoracic injury criteria to assess injury potential for the thorax. It has been shown that the model exhibited speed sensitive impact characteristics, and the compressibility of the internal organs significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated FE human body model could be useful for injury assessment in various cadaveric impacts reported in the literature. Internal organ injuries, which are difficult to detect in experimental studies with human cadavers, can be more easily identified with a validated finite element model through stress-strain analysis, especially in conjunction with experimental studies.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.