10 results on '"Duong, Duc Long"'
Search Results
2. More Than 50 Percent Reduction in LDL Cholesterol in Patients With Target LDL <70 mg/dL After a Stroke
- Author
-
Amarenco, Pierre, Lavallée, Philippa C., Kim, Jong S., Labreuche, Julien, Charles, Hugo, Giroud, Maurice, Lee, Byung-Chul, Mahagne, Marie-Hélène, Meseguer, Elena, Nighoghossian, Norbert, Steg, Philippe Gabriel, Vicaut, Éric, Bruckert, Eric, Kim, Jong S, Touboul, Pierre-Jean, Leys, Didier, Béjot, Yannick, Pico, Fernando, Touzé, Emmanuel, Ducrocq, Gregory, Abtan, Jérémy, Varenne, Olivier, Touboul, Pierre-Jean, Kemmel, Agnes, Syana, Fausta, Ledra, Manele, Nagasara, Tharani, Ledjeroud, Mervette, Samia, Bahous, Hadia, Hafirassou, Hazare, Benyoub, Jaghouni, Ikrame El, Yelles, Nessima, Zemouri, Sofia, Ladjeroud, Mervette, Kerai, Salim, In, YunJeong, Hobeanu, Cristina, Guidoux, Celine, Cabrejo, Lucie, Lapergue, Bertrand, Sabben, Candice, Gonzalez-Valcarcel, Jaime, Rigual, Ricardo, Sirimarco, Gaia, Martin-Bechet, Anna, Viedma, Elena, Avram, Ioan, Samson, Yves, Rosso, Charlotte, Crozier, Sophie, Leder, Sara, Léger, Anne, Deltour, Sandrine, Mutlu, Gurkan, Yger, Marion, Zavanone, Chiara, Baronnet, Flore, Pires, Christine, Lapergue, Bertrand, Wang, Adrien, Evrard, Serge, Tchikviladze, Maya, Bourdain, Frédéric, Lopez, Delphine, Pico, Fernando, de la Tour, Laetitia Bayon, Chadenat, Marie-Laure, Duong, Duc Long, Genty, Solène, Hirel, Catherine, Mutlu, Gurkan, Nifle, Chantal, Servan, Jérôme, Stanciu, Daniela, Sudacevschi, Veronica, Tir, Mélissa, Troussière, Anne-Cécile, Yeung, Jennifer, Zeghoudi, Anne-Céline, Tidafi-Bayou, Ikram, Lachaud, Sylvain, Cho, Tae-Hee, Mechtouff, Laura, Ritzenthaller, Thomas, Derex, Laurent, Albanesi, Carlo, Ong, Elodie, Benoit, Amandine, Berhoune, Nadia, Felix, Sandra, Esteban-Mader, Maud, Sibon, Igor, Kazadi, Annabelle, Rouanet, François, Renou, Pauline, Debruxelles, Sabrina, Poli, Mathilde, Sagnier, Sharmila, Mas, Jean-Louis, Domigo, Valérie, Lamy, Catherine, Bodiguel, Eric, Grimaud, Jérôme, Bohotin, Valentin, Obadia, Michael, Sabben, Candice, Morvan, Erwan, Rodier, Gilles, Vadot, Wilfried, Hénon, Hilde, Cordonnier, Charlotte, Dumont, Frédéric, Bodenant, Marie, Lucas, Christian, Moulin, Solène, Dequatre, Nelly, Alamowitch, Sonia, Muresan, Jean-Paul, Drouet, Thomas, Gallea, Magalie, Dalloz, Marie-Amélie, Delorme, Stephen, Yger, Marion, Béjot, Yannick, Loisel, Philippe, Bonnin, Carine, Bernigal, Virginie, Osseby, Guy Victor, Hervieu-BègueMarsac, Marie, Garnier, Pierre, Accassat, Sandrine, Epinat, Magali, Varvat, Jérôme, Marinescu, Doïna, Triquenot-Bagan, Aude, Ozkul- Wermester, Ozlem, Philippeau, Frédéric, Olaru, Angel, Vieillart, Anne, Lannuzel, Annie, Demoly, Alice, Wolff, Valérie, Diaconu, Mihaela, Bataillard, Marc, Montoro, Francisco Macian, Faugeras, Frédéric, Gimenez, Laeticia, Abdallah-Lebeau, Françoise, Timsit, Serge, Viakhireva-Dovganyuk, Irina, Tirel-Badets, Anne, Merrien, François-Mathias, Goas, Philippe, Rouhart, François, Jourdain, Aurore, Guillon, Benoit, Hérissson, Fanny, Sevin-Allouet, Mathieu, Nasr, Nathalie, Olivot, Jean-Marc, Lecluse, Alderic, Marc, Guillaume, Touzé, Emmanuel, de la Sayette, Vincent, Apoil, Marion, Lin, Li, Cogez, Julien, Guettier, Sophie, Godefroy, Olivier, Lamy, Chantal, Bugnicourt, Jean-Marc, Taurin, Grégory, Mérienne, Marc, Gere, Julien, Chessak, Anne-Marie, Habet, Tarik, Ferrier, Anna, Bourgois, Nathalie, Minier, Dominique, Caillier-Minier, Marie, Contégal- Callier, Fabienne, Vion, Philippe, Vaschalde, Yvan, Amrani, Mohammed El, Emilie, Zuber, Mathieu, Bruandet, Marie, Join- Lambert, Claire, Garcia, Pierre-Yves, Serre, Isabelle, Faucheux, Jean-Marc, Radji, Fatia, Leca-Radu, Elena, Debroucker, Thomas, Cumurcuc, Rodica, Cakmak, Serkan, Peysson, Stéphane, Ellie, Emmanuel, Bernady, Patricia, Moulin, Thierry, Montiel, Paola, Revenco, Eugeniu, Decavel, Pierre, Medeiros, Elisabeth, Bouveret, Myriam, Louchart, Pierre, Vaduva, Claudia, Couvreur, Grégory, Sartori, Eric, Carpentier, Alnajar, Levasseur, Michèle, Louchart, Pierre, Faucheux, Jean-Marc, Neau, Philippe, Vandamme, Xavier, Meresse, Isabelle, Stantescu, Bataillard, Marc, Ozsancak, Canan, Beauvais, Katell, Auzou, Pascal, Amevigbe, Joséphine, Vuillemet, Francis, Dugay-Arentz, Marie-Hélène, Carelli, Gabriela, Martinez, Mikel, Maillet-Vioud, Marcel, Escaillas, Jean-Pierre, Chapuis, Stéphane, Tardy, Jean, Manchon, Eric, Varnet, Olivier, Kim, Yong-Jae, Chang, Yoonkyung, Song, Tae-Jin, Kim, Jong Sung, Han, Jung-Hoon, Noh, Kyung Chul, Lee, Eun-Jae, Kang, Dong-Wha, Kwon, Sun Uck, Kwon, Boseoung, Park, Seongho, Lee, Dongwhane, Kwon, Hyuk Sung, Jeong, Daeun, Lee, MinHwan, Kim, Joonggoo, Lee, Hanbin, Nam, Hyo Jung, Lee, Sang Hun, Kim, Bum Joon, Cha, Jae-kwan, Kim, DaeHyun, Kim, Rae Young, Sohn, Sang Wuk, Shim, Dong-Hyun, Lee, Hyungjin, Nah, Hyun-Wook, Sung, Sang Min, Lee, Kyung Bok, Yoon Lee, Jeong, Yoon, Jee Eun, Kim, Eung-Gyu, Seo, Jung Hwa, Kim, Yong-Won, Hwang, Yangha, Park, Man Seok, Kim, Joon-Tae, Choi, Kang-Ho, Nam, Hyo Suk, Heo, Ji Hoe, Kim, Young Dae, Hwang, In Gun, Park, Hyung Jong, Kim, Kyoung Sub, Baek, Jang Hyun, Song, Dong Beom, Yoo, Joon Sang, Park, Jong-Moo, Kwon, Ohyun, Lee, Woong-Woo, Lee, Jung-Ju, Kang, Kyusik, Kim, Byung Kun, Lim, Jae-Sung, Oh, Mi Sun, Yu, Kyung-Ho, Hong, Bora, Jang, Mihoon, Jang, Seyoung, Jin, Jung Eun, Kim, Jei, Jeong, Hye Seon, Hong, Keun Sik, Park, Hong Kyun, Cho, Yong Jin, Bang, Oh Young, Seo, Woo-Keun, and Chung, Jongwon
- Published
- 2023
- Full Text
- View/download PDF
3. Efficacy of electrochemically activated water solution in gingivitis treatment
- Author
-
Vo, Truong Nhu Ngoc, Chu, Dinh-Toi, Duong, Duc Long, Bui, Van Nhon, Tong, Minh Son, Nguyen, Thi Thu Phuong, Le, Quynh Anh, Nguyen, Khanh-Hoang, Pham, Van-Huy, and Chu-Dinh, Thien
- Published
- 2019
- Full Text
- View/download PDF
4. Benefit of Targeting a LDL (Low-Density Lipoprotein) Cholesterol <70 mg/dL During 5 Years After Ischemic Stroke
- Author
-
Amarenco, Pierre, Kim, Jong S., Labreuche, Julien, Charles, Hugo, Giroud, Maurice, Lee, Byung-Chul, Mahagne, Marie-Hélène, Nighoghossian, Norbert, Gabriel Steg, Philippe, Vicaut, Éric, Bruckert, Eric, Touboul, Pierre-Jean, Leys, Didier, Béjot, Yannick, Lavallée, Philippa, Pico, Fernando, Touzé, Emmanuel, Ducrocq, Gregory, Abtan, Jérémy, Varenne, Olivier, Touboul, Pierre-Jean, Kemmel, Agnes, Syana, Fausta, Ledra, Manele, Nagasara, Tharani, Ledjeroud, Mervette, Samia, Bahous, Hadia, Hafirassou, Hazare, Benyoub, El Jaghouni, Ikrame, Yelles, Nessima, Zemouri, Sofia, Ladjeroud, Mervette, Kerai, Salim, In, Yun Jeong, Meseguer, Elena, Lavallée, Philippa C, Hobeanu, Cristina, Guidoux, Celine, Cabrejo, Lucie, Lapergue, Bertrand, Sabben, Candice, Gonzalez-Valcarcel, Jaime, Rigual, Ricardo, Sirimarco, Gaia, Martin-Bechet, Anna, Viedma, Elena, Avram, Ioan, Samson, Yves, Rosso, Charlotte, Crozier, Sophie, Leder, Sara, Léger, Anne, Deltour, Sandrine, Mutlu, Gurkan, Yger, Marion, Zavanone, Chiara, Baronnet, Flore, Pires, Christine, Lapergue, Bertrand, Wang, Adrien, Evrard, Serge, Tchikviladze, Maya, Bourdain, Frédéric, Lopez, Delphine, Pico, Fernando, de la Tour, Laetitia Bayon, Chadenat, Marie-Laure, Duong, Duc Long, Genty, Solène, Hirel, Catherine, Mutlu, Gurkan, Nifle, Chantal, Servan, Jérôme, Stanciu, Daniela, Sudacevschi, Veronica, Tir, Mélissa, Troussière, Anne-Cécile, Yeung, Jennifer, Zeghoudi, Anne-Céline, Tidafi-Bayou, Ikram, Lachaud, Sylvain, Cho, Tae-Hee, Mechtouff, Laura, Ritzenthaller, Thomas, Derex, Laurent, Albanesi, Carlo, Ong, Elodie, Benoit, Amandine, Berhoune, Nadia, Felix, Sandra, Esteban-Mader, Maud, Sibon, Igor, Kazadi, Annabelle, Rouanet, François, Renou, Pauline, Debruxelles, Sabrina, Poli, Mathilde, Sagnier, Sharmila, Mas, Jean-Louis, Domigo, Valérie, Lamy, Catherine, Bodiguel, Eric, Grimaud, Jérôme, Bohotin, Valentin, Obadia, Michael, Sabben, Candice, Morvan, Erwan, Rodier, Gilles, Vadot, Wilfried, Hénon, Hilde, Cordonnier, Charlotte, Dumont, Frédéric, Bodenant, Marie, Lucas, Christian, Moulin, Solène, Dequatre, Nelly, Alamowitch, Sonia, Muresan, Jean-Paul, Drouet, Thomas, Gallea, Magalie, Dalloz, Marie-Amélie, Delorme, Stephen, Yger, Marion, Béjot, Yannick, Loisel, Philippe, Bonnin, Carine, Bernigal, Virginie, Osseby, Guy Victor, Marsac, Marie Hervieu-Bègue, Garnier, Pierre, Accassat, Sandrine, Epinat, Magali, Varvat, Jérôme, Marinescu, Doïna, Triquenot-Bagan, Aude, Ozkul-Wermester, Ozlem, Philippeau, Frédéric, Olaru, Angel, Vieillart, Anne, Lannuzel, Annie, Demoly, Alice, Wolff, Valérie, Diaconu, Mihaela, Bataillard, Marc, Montoro, Francisco Macian, Faugeras, Frédéric, Gimenez, Laeticia, Abdallah-Lebeau, Françoise, Timsit, Serge, Viakhireva-Dovganyuk, Irina, Tirel-Badets, Anne, Merrien, François-Mathias, Goas, Philippe, Rouhart, François, Jourdain, Aurore, Guillon, Benoit, Hérissson, Fanny, Sevin-Allouet, Mathieu, Nasr, Nathalie, Olivot, Jean-Marc, Lecluse, Alderic, Marc, Guillaume, Touzé, Emmanuel, de la Sayette, Vincent, Apoil, Marion, Lin, Li, Cogez, Julien, Guettier, Sophie, Godefroy, Olivier, Lamy, Chantal, Bugnicourt, Jean-Marc, Taurin, Grégory, Mérienne, Marc, Gere, Julien, Chessak, Anne-Marie, Habet, Tarik, Ferrier, Anna, Bourgois, Nathalie, Minier, Dominique, Caillier-Minier, Marie, Contégal-Callier, Fabienne, Vion, Philippe, Vaschalde, Yvan, El Amrani, Emilie, Mohammed, Zuber, Mathieu, Bruandet, Marie, Join-Lambert, Claire, Garcia, Pierre-Yves, Serre, Isabelle, Faucheux, Jean-Marc, Radji, Fatia, Leca-Radu, Elena, Debroucker, Thomas, Cumurcuc, Rodica, Cakmak, Serkan, Peysson, Stéphane, Ellie, Emmanuel, Bernady, Patricia, Moulin, Thierry, Montiel, Paola, Revenco, Eugeniu, Decavel, Pierre, Medeiros, Elisabeth, Bouveret, Myriam, Louchart, Pierre, Vaduva, Claudia, Couvreur, Grégory, Sartori, Eric, Alnajar-Carpentier, Eric, Levasseur, Michèle, Louchart, Pierre, Neau, Jean-Philippe, Vandamme, Xavier, Meresse, Isabelle, Stantescu, Bataillard, Marc, Ozsancak, Canan, Beauvais, Katell, Auzou, Pascal, Amevigbe, Joséphine, Vuillemet, Francis, Dugay-Arentz, Marie-Hélène, Carelli, Gabriela, Martinez, Mikel, Maillet-Vioud, Marcel, Escaillas, Jean-Pierre, Chapuis, Stéphane, Tardy, Jean, Manchon, Eric, Varnet, Olivier, Kim, Yong-Jae, Chang, Yoonkyung, Song, Tae-Jin, Han, Jung-Hoon, Noh, Kyung Chul, Lee, Eun-Jae, Kang, Dong-Wha, Kwon, Sun Uck, Kwon, Boseoung, Park, Seongho, Lee, Dongwhane, Kwon, Hyuk Sung, Jeong, Daeun, Lee, MinHwan, Kim, Joonggoo, Lee, Hanbin, Nam, Hyo Jung, Lee, Sang Hun, Kim, Bum Joon, Cha, Jae-kwan, Kim, DaeHyun, Young Kim, Rae, Sohn, Sang Wuk, Shim, Dong-Hyun, Lee, Hyungjin, Nah, Hyun-Wook, Sung, Sang Min, Lee, Kyung Bok, Lee, Jeong Yoon, Yoon, Jee Eun, Kim, Eung-Gyu, Seo, Jung Hwa, Kim, Yong-Won, Hwang, Yangha, Park, Man Seok, Kim, Joon-Tae, Choi, Kang-Ho, Nam, Hyo Suk, Heo, Ji Hoe, Kim, Young Dae, Hwang, In Gun, Park, Hyung Jong, Kim, Kyoung Sub, Baek, Jang Hyun, Song, Dong Beom, Yoo, Joon Sang, Park, Jong-Moo, Kwon, Ohyun, Lee, Woong-Woo, Lee, Jung-Ju, Kang, Kyusik, Kim, Byung Kun, Lim, Jae-Sung, Oh, Mi Sun, Yu, Kyung-Ho, Hong, Bora, Jang, Mihoon, Jang, Seyoung, Jin, Jung Eun, Kim, Jei, Jeong, Hye Seon, Hong, Keun Sik, Park, Hong Kyun, Cho, Yong Jin, Bang, Oh Young, Seo, Woo-Keun, and Chung, Jongwon
- Published
- 2020
- Full Text
- View/download PDF
5. Efficacy of Endovascular Therapy in Acute Ischemic Stroke Depends on Age and Clinical Severity
- Author
-
Le Bouc, Raphaël, Clarençon, Frédéric, Meseguer, Elena, Lapergue, Bertrand, Consoli, Arturo, Turc, Guillaume, Naggara, Olivier, Duong, Duc Long, Servan, Jerome, Reiner, Peggy, Labeyrie, Marc Antoine, Fisselier, Mathieu, Blanc, Raphaël, Farhat, Wassim, Pires, Christine, Zuber, Mathieu, Obadia, Michael, Mazighi, Mikael, Pico, Fernando, Mas, Jean-Louis, Amarenco, Pierre, Samson, Yves, Rosso, Charlotte, Crozier, Sophie, Deltour, Sandrine, Leger, Anne, Baronnet, Flore, Frasca-Polara, Giulia, Diaz, Belen, Sourour, Nader, Di Maria, Frederico, Pistocchi, Silvia, Bartolini, Bruno, Hobeanu, Christina, Rigual, Ricardo, Guidoux, Céline, Cabrejo, Lucie, Lavallée, Philippa, Martin-Bechet, Anna, Sabben, Candice, Bourdain, Frédéric, Wang, Adrien, Evrard, Serge, Decroix, Jean-Pierre, Tchikviladze, Maya, Tisserand, Marie, Rodesch, Georges, Coskun, Oguzhan, Seners, Pierre, Isabel, Clothilde, Lamy, Catherine, Domigo, Valérie, Birchenall, Julia, Guiraud, Vincent, Bodiguel, Eric, Calvet, David, Trystram, Denis, Rodriguez-Régent, Christine, Ben Hassen, Wagih, Boulouis, Grégoire, Godon-Hardy, Sylvie, Méder, Jean-François, Oppenheim, Catherine, Zeghoudi, Anne-Cécile, Nifle, Chantal, Yeung, Jennifer, Stanciu, Daniela, Buch, Dan, Chadenat, Marie-Laure, Girbovan, Aandrei, Bayon, Laeticia, Troussiere, Anne-Cécile, Calinescu, Georgina, Rostomashvili, Sophio, SudaveschiVeronica, de Malherbe, Maxime, Chabriat, Hugues, Jouvent, Eric, Herve, Dominique, Porcher, Frédérique, Bouquet-Castiglione, Floriane, Morvan, Typhaine, Lyoubi-Idrissi, Aïcha, Cognat, Emmanuel, Join Lambert, Claire, Tamazyan, Ruben, and Gerber, Sophie
- Published
- 2018
- Full Text
- View/download PDF
6. Automated caries detection with smartphone color photography using machine learning.
- Author
-
Duong, Duc Long, Kabir, Malitha Humayun, and Kuo, Rong Fu
- Subjects
- *
DIAGNOSIS of dental caries , *SUPPORT vector machines , *DIGITAL image processing , *PREDICTIVE tests , *ACADEMIC medical centers , *SMARTPHONES , *MACHINE learning , *PHOTOGRAPHY , *AUTOMATION , *DESCRIPTIVE statistics , *STATISTICAL models , *DIGITAL diagnostic imaging - Abstract
Untreated caries is significant problem that affected billion people over the world. Therefore, the appropriate method and accuracy of caries detection in clinical decision-making in dental practices as well as in oral epidemiology or caries research, are required urgently. The aim of this study was to introduce a computational algorithm that can automate recognize carious lesions on tooth occlusal surfaces in smartphone images according to International Caries Detection and Assessment System (ICDAS). From a group of extracted teeth, 620 unrestored molars/premolars were photographed using smartphone. The obtained images were evaluated for caries diagnosis with the ICDAS II codes, and were labeled into three classes: "No Surface Change" (NSC); "Visually Non-Cavitated" (VNC); "Cavitated" (C). Then, a two steps detection scheme using Support Vector Machine (SVM) has been proposed: " C versus (VNC + NSC) " classification, and " VNC versus NSC " classification. The accuracy, sensitivity, and specificity of best model were 92.37%, 88.1%, and 96.6% for " C versus (VNC + NSC)," whereas they were 83.33%, 82.2%, and 66.7% for " VNC versus NSC." Although the proposed SVM system required further improvement and verification, with the data only imaged from the smartphone, it performed an auspicious potential for clinical diagnostics with reasonable accuracy and minimal cost. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
7. Prediction of Early Neurological Deterioration in Individuals With Minor Stroke and Large Vessel Occlusion Intended for Intravenous Thrombolysis Alone.
- Author
-
Seners, Pierre, Ben Hassen, Wagih, Lapergue, Bertrand, Arquizan, Caroline, Heldner, Mirjam R., Henon, Hilde, Perrin, Claire, Strambo, Davide, Cottier, Jean-Philippe, Sablot, Denis, Girard Buttaz, Isabelle, Tamazyan, Ruben, Preterre, Cécile, Agius, Pierre, Laksiri, Nadia, Mechtouff, Laura, Béjot, Yannick, Duong, Duc-Long, Mounier-Vehier, François, and Mione, Gioia
- Published
- 2021
- Full Text
- View/download PDF
8. Effect of In-Hospital Remote Ischemic Perconditioning on Brain Infarction Growth and Clinical Outcomes in Patients With Acute Ischemic Stroke: The RESCUE BRAIN Randomized Clinical Trial.
- Author
-
Pico, Fernando, Lapergue, Bertrand, Ferrigno, Marc, Rosso, Charlotte, Meseguer, Elena, Chadenat, Marie-Laure, Bourdain, Frederic, Obadia, Michael, Hirel, Catherine, Duong, Duc Long, Deltour, Sandrine, Aegerter, Philippe, Labreuche, Julien, Cattenoy, Amina, Smadja, Didier, Hosseini, Hassan, Guillon, Benoit, Wolff, Valérie, Samson, Yves, and Cordonnier, Charlotte
- Published
- 2020
- Full Text
- View/download PDF
9. MRI-Based Predictors of Hemorrhagic Transformation in Patients With Stroke Treated by Intravenous Thrombolysis.
- Author
-
El Nawar, Rody, Yeung, Jennifer, Labreuche, Julien, Chadenat, Marie-Laure, Duong, Duc Long, De Malherbe, Maxime, Cordoliani, Yves-Sebastien, Lapergue, Bertrand, and Pico, Fernando
- Subjects
CEREBRAL infarction ,RECEIVER operating characteristic curves ,DIFFUSION magnetic resonance imaging ,STROKE patients ,THROMBOLYTIC therapy - Abstract
Background: Clinical and biological risk factors for hemorrhagic transformation (HT) after intravenous thrombolysis (IT) have been well-established in several registries. The added value of magnetic resonance imaging (MRI) variables has been studied in small samples, and is controversial. We aimed to assess the added value of MRI variables in HT, beyond that of clinical and biological factors. Methods: We enrolled 474 consecutive patients with brain infarction treated by IT alone at our primary stroke center between January 2011 and August 2017. Baseline demographic, clinical, biological, and imaging characteristics were collected. MRI variables were: brain infarction volume in cm
3 ; parenchymal fluid attenuated inversion recovery (FLAIR) hyperintensity; FLAIR hyperintense vessel signs; number of microbleeds; subcortical white matter hyperintensity; and thrombus length. Results: Overall, 301 patients were included out of 474 (64%). The main causes of exclusion were combined thrombectomy (n = 98) and no MRI before IT (n = 44). In the bivariate analysis, HT was significantly associated with the presence of more FLAIR hyperintense vessel signs, thrombus length (>8 mm), and larger brain infarction volume (diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) < 500 × 10−6 mm2 /s). In the multivariable analysis, only brain infarction volume was significantly associated with HT. The discrimination value of the multivariable model, including both the DWI volume and the clinical model (area under the receiver operating characteristic curve, 0.80; 95% confidence interval 0.74–0.86), was improved significantly compared with the model based only on clinical variables (P = 0.012). Conclusions: Brain infarction volume on DWI was the only MRI variable that added value to clinico biological variables for predicting HT after IT. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
10. Proof-of-Concept Study on an Automatic Computational System in Detecting and Classifying Occlusal Caries Lesions from Smartphone Color Images of Unrestored Extracted Teeth.
- Author
-
Duong, Duc Long, Nguyen, Quoc Duy Nam, Tong, Minh Son, Vu, Manh Tuan, Lim, Joseph Dy, and Kuo, Rong Fu
- Subjects
- *
SMARTPHONES , *DENTAL caries , *TOOTH sensitivity , *SUPPORT vector machines , *DENTAL arch , *ARTIFICIAL intelligence , *TEETH - Abstract
Dental caries has been considered the heaviest worldwide oral health burden affecting a significant proportion of the population. To prevent dental caries, an appropriate and accurate early detection method is demanded. This proof-of-concept study aims to develop a two-stage computational system that can detect early occlusal caries from smartphone color images of unrestored extracted teeth according to modified International Caries Detection and Assessment System (ICDAS) criteria (3 classes: Code 0; Code 1–2; Code 3–6): in the first stage, carious lesion areas were identified and extracted from sound tooth regions. Then, five characteristic features of these areas were intendedly selected and calculated to be inputted into the classification stage, where five classifiers (Support Vector Machine, Random Forests, K-Nearest Neighbors, Gradient Boosted Tree, Logistic Regression) were evaluated to determine the best one among them. On a set of 587 smartphone images of extracted teeth, our system achieved accuracy, sensitivity, and specificity that were 87.39%, 89.88%, and 68.86% in the detection stage when compared to modified visual and image-based ICDAS criteria. For the classification stage, the Support Vector Machine model was recorded as the best model with accuracy, sensitivity, and specificity at 88.76%, 92.31%, and 85.21%. As the first step in developing the technology, our present findings confirm the feasibility of using smartphone color images to employ Artificial Intelligence algorithms in caries detection. To improve the performance of the proposed system, there is a need for further development in both in vitro and in vivo modeling. Besides that, an applicable system for accurately taking intra-oral images that can capture entire dental arches including the occlusal surfaces of premolars and molars also needs to be developed. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.