Persistent viruses, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, cause major health problems worldwide and are extraordinarily difficult to clear following the establishment of persistence. Given the challenges associated with clearing persistent infections, it is important to develop and mechanistically understand therapeutic strategies that successfully achieve viral eradication without inducing permanent damage in the host. Studies using the lymphocytic choriomeningitis virus (LCMV) model system have convincingly demonstrated that a systemic persistent viral infection can be completely purged from a murine host by using a therapeutic approach referred to as adoptive immunotherapy (1, 15, 22, 29, 30). Remarkably, total body control of multiple persistent viral infections in both the mouse (1, 15, 22, 29, 30) and humans (8, 14, 24, 26, 31) can be achieved using adoptive immunotherapy. When mice are persistently infected at birth or in utero with LCMV (referred to as carrier mice), the virus establishes systemic persistence (6). Adult LCMV carrier mice are tolerant to the virus at the T-cell level and thus are unable to eradicate the pathogen (23), which provides an excellent model to study immunotherapeutic regimens. Immunocytotherapy relies on the adoptive transfer of virus-specific memory CD8 and CD4 T cells from LCMV-immune donor mice into recipient carrier mice (1, 15, 22, 29, 30). Following the therapeutic administration of memory cells, LCMV is purged from most peripheral tissues of carrier mice in 14 days, whereas more than 100 days are required to clear virus from the central nervous system (CNS) and kidneys (1, 15, 22). Furthermore, successful viral clearance requires antiviral “memory” but not “effector” T cells (11). Thus, in addition to its proven therapeutic relevance, this model also provides a paradigm to understand factors that regulate memory T cells following secondary exposure to pathogens in vivo. The mechanisms leading to activation of naive T cells have been well described and involve recognition of major histocompatibility complex (MHC) peptide through the T-cell receptor (TCR) as well as costimulation (e.g., CD80 and CD86 interactions) (4, 25, 27). On the other hand, the factors that govern the activation and secondary expansion of memory CD8+ and CD4+ T cells are less clearly defined, particularly in an in vivo therapeutic setting. When memory T cells reencounter cognate antigen, they respond rapidly by producing cytokines and dividing. Previous studies indicated that there was no role for dendritic cells or costimulation (4, 27) in the reactivation of memory T cells; however, three recent studies have shown that dendritic cells (DCs) stimulate memory T-cell activity upon antigen rechallenge (2, 33) and during adoptive immunotherapy (15). Because MHC class I antigen (MHC-I) is expressed on nearly all cell types but costimulatory molecules are not, these three studies strongly suggested that DCs were influencing memory T cells with costimulatory pathways thought only to be required during priming. Indeed, when the issue was reexamined, it was revealed that memory CD8+ and CD4+ T cells require CD28-CD80/CD86 costimulation to be fully reactivated upon secondary exposure to antigen (3, 7, 21). Because therapeutically administered memory T cells require effective interactions with the host hematopoietic system (10), in particular dendritic cells (15), to achieve successful viral clearance, we set out to address several unanswered questions. First, is costimulation required for the immunotherapeutic clearance of an established persistent viral infection? This is a particularly important question because the requirements imposed on therapeutically administered memory T cells, which encounter immediate and overwhelmingly high levels of virus, heightened antigenic stimulation, and a unique inflammatory milieu, are likely to be different than those faced by endogenous memory T cells following pathogen rechallenge in an otherwise-quiescent environment. The second question we set out to address in this study was whether costimulation blockade could modulate the activities of an immunotherapeutic regimen consisting of memory T cells. This question is of great importance in a clinical setting where pathogen-specific memory T cells can induce severe tissue pathology through the release of effector molecules (12). Thus, it is critical to have a strategy to limit the magnitude of an undesirable response without impeding viral clearance.