6 results on '"Dana, Karl L."'
Search Results
2. Daylight-driven carbon exchange through a vertically structured microbial community.
- Author
-
Moran, James J., Bernstein, Hans C., Mobberley, Jennifer M., Thompson, Allison M., Young-Mo Kim, Dana, Karl L., Cory, Alexandra B., Courtney, Steph, Renslow, Ryan S., Fredrickson, James K., Kreuzer, Helen W., and Lipton, Mary S.
- Subjects
MICROBIAL communities ,STABLE isotope analysis ,STABLE isotope tracers ,MICROBIAL mats ,COMMUNITIES ,ECOSYSTEMS - Abstract
Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with
13 C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of13 C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
3. Biogeochemical cycling at the aquatic-terrestrial interface is linked to parafluvial hyporheic zone inundation history.
- Author
-
Goldman, Amy E., Graham, Emily B., Crump, Alex R., Kennedy, David W., Romero, Elvira B., Anderson, Carolyn G., Dana, Karl L., Resch, Charles T., Fredrickson, Jim K., and Stegen, James C.
- Subjects
BIOGEOCHEMICAL cycles ,MICROBIAL respiration ,WATERSHED management ,RIVER sediments ,MICROBIAL communities - Abstract
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/ terrestrial inputs and the effects of wet-dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic-terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, %C, %N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO
2 . Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Carbon cycling at the aquatic-terrestrial interface is linked to parafluvial hyporheic zone inundation history.
- Author
-
Goldman, Amy E., Graham, Emily B., Crump, Alex R., Kennedy, David W., Romero, Elvira B., Anderson, Carolyn G., Dana, Karl L., Resch, Charles T., Fredrickson, Jim K., and Stegen, James C.
- Subjects
CARBON cycle ,FLUVIAL geomorphology ,ECOTONES ,BIOGEOCHEMICAL cycles ,MICROBIAL respiration - Abstract
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet/dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding carbon cycling at the aquatic-terrestrial interface and to creating robust hydrobiogeochemical models. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated reinundation. Surface sediment for assays and forced inundation laboratory incubations (destructively sampled at 0.5 hours and 25 hours) was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sampling elevations were inundated by the river 0 days, 13 days, 127 days, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, % C, % N) and microbial communities (16S and ITS rRNA gene sequencing, qPCR) were driven by differences in elevation and thus inundation history. Microbial respiration did not differ significantly across elevations prior to inundation. Inundation suppressed microbial respiration relative to uninundated sediment across all elevations, but the degree of suppression was dramatically different between the elevations saturated and unsaturated during sampling, indicating a binary threshold response. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO
2 . Upon re-wetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts via a shift in composition. Our results indicate that the time between inundation events can push the system into alternate states: we suggest that (i) above some threshold of inundation-interval, re-inundation suppresses respiration to a consistent, low rate, and (ii) that below some inundation-interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
5. Corrigendum: Saliniramus fredricksonii gen. nov., sp. nov., a heterotrophic halophile isolated from Hot Lake, Washington, a member of a novel lineage (Salinarimonadaceae fam. nov.) within the order Rhizobiales, and reclassification of the genus Salinarimonas Liu et al. 2010 into Salinarimonadaceae.
- Author
-
Cole JK, Morton BR, Cardamone HC, Lake HRR, Dohnalkova AC, Kim YM, Kyle JE, Maezato Y, Dana KL, Metz TO, Romine MF, Nelson WC, and Lindemann SR
- Abstract
There was an error in the proposed genus name in the published article, in that the genus 'Salinivirga' was effectively published while this article was in review. Therefore, the genus 'Salinivirga' should be replaced with 'Saliniramus'. For the convenience of future readers, we have included the complete corrected article below, in which all occurrences of the incorrect genus name have been amended: A halophilic bacterial strain, HL-109
T , was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Saliniramus fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T =DSM 102886T ). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Saliniramus and Salinarimonas (the type genus of the family).- Published
- 2018
- Full Text
- View/download PDF
6. Salinivirga fredricksonii gen. nov., sp. nov., a heterotrophic halophile isolated from a photosynthetic mat, a member of a novel lineage (Salinarimonadaceae fam. nov.) within the order Rhizobiales, and reclassification of the genus Salinarimonas Liu et al. 2010 into Salinarimonadaceae.
- Author
-
Cole JK, Morton BR, Cardamone HC, Lake HRR, Dohnalkova AC, Kim YM, Kyle JE, Maezato Y, Dana KL, Metz TO, Romine MF, Nelson WC, and Lindemann SR
- Subjects
- Alphaproteobacteria genetics, Bacterial Typing Techniques, Base Composition, Cyanobacteria genetics, Cyanobacteria isolation & purification, DNA, Bacterial genetics, Fatty Acids chemistry, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Washington, Alphaproteobacteria classification, Cyanobacteria classification, Lakes microbiology, Phylogeny
- Abstract
A halophilic bacterial strain, HL-109
T , was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Salinivirga fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T =DSM 102886T ). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Salinivirga and Salinarimonas (the type genus of the family).- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.