1. One-domination of knots
- Author
-
Shicheng Wang, Dale Rolfsen, Steve Boyer, Michel Boileau, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), and Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Degree (graph theory) ,010308 nuclear & particles physics ,General Mathematics ,010102 general mathematics ,01 natural sciences ,Combinatorics ,Knot (unit) ,57M27 ,55M25 ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,57M25 ,0103 physical sciences ,0101 mathematics ,[MATH]Mathematics [math] ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
We say that a knot $k_{1}$ in the $3$-sphere $1$-dominates another $k_{2}$ if there is a proper degree 1 map $E(k_{1})\to E(k_{2})$ between their exteriors, and write $k_{1}\ge k_{2}$. When $k_{1}\ge k_{2}$ but $k_{1}\ne k_{2}$ we write $k_{1}>k_{2}$. One expects in the latter eventuality that $k_{1}$ is more complicated. In this paper, we produce various sorts of evidence to support this philosophy.
- Published
- 2016