10 results on '"Dalal Fadil"'
Search Results
2. A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology
- Author
-
Dalal Fadil, Vikram Passi, Wei Wei, Soukaina Ben Salk, Di Zhou, Wlodek Strupinski, Max C. Lemme, Thomas Zimmer, Emiliano Pallecchi, Henri Happy, and Sebastien Fregonese
- Subjects
graphene ,microwave ,mmic ,integrated circuits ,active balun ,2d materials ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This paper presents the first graphene radiofrequency (RF) monolithic integrated balun circuit. It is composed of four integrated graphene field effect transistors (GFETs). This innovative active balun concept takes advantage of the GFET ambipolar behavior. It is realized using an advanced silicon carbide (SiC) based bilayer graphene FET technology having RF performances of about 20 GHz. Balun circuit measurement demonstrates its high frequency capability. An upper limit of 6 GHz has been achieved when considering a phase difference lower than 10° and a magnitude of amplitude imbalance less than 0.5 dB. Hence, this circuit topology shows excellent performance with large broadband performance and a functionality of up to one-third of the transit frequency of the transistor.
- Published
- 2020
- Full Text
- View/download PDF
3. A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology
- Author
-
Emiliano Pallecchi, Thomas Zimmer, Max C. Lemme, Vikram Passi, Di Zhou, Soukaina Ben Salk, Henri Happy, Dalal Fadil, Sebastien Fregonese, Wei Wei, Wlodek Strupinski, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), School of Computer and Electronic Information [Guangxi University], Guangxi University [Nanning], Warsaw University of Technology [Warsaw], Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Carbon - IEMN (CARBON - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EU Horizon2020 research and innovation programe (Graphene Flagship – Graphene Core2 785219) for financial supports. This work was partially supported by the French RENATECH network, Renatech Network, European Project: 785219,H2020,GrapheneCore2(2018), Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and Carbon-IEMN (CARBON-IEMN)
- Subjects
Materials science ,microwave ,mmic ,02 engineering and technology ,Integrated circuit ,01 natural sciences ,lcsh:Technology ,law.invention ,lcsh:Chemistry ,chemistry.chemical_compound ,law ,Balun ,0103 physical sciences ,Silicon carbide ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Instrumentation ,lcsh:QH301-705.5 ,Monolithic microwave integrated circuit ,010302 applied physics ,Fluid Flow and Transfer Processes ,Graphene ,business.industry ,lcsh:T ,Process Chemistry and Technology ,2d materials ,Transistor ,graphene ,General Engineering ,021001 nanoscience & nanotechnology ,active balun ,lcsh:QC1-999 ,Computer Science Applications ,chemistry ,lcsh:Biology (General) ,lcsh:QD1-999 ,lcsh:TA1-2040 ,Optoelectronics ,0210 nano-technology ,Bilayer graphene ,business ,lcsh:Engineering (General). Civil engineering (General) ,ddc:600 ,integrated circuits ,Microwave ,lcsh:Physics - Abstract
Applied Sciences 10(6), 2183 (2020). doi:10.3390/app10062183, Published by MDPI, Basel
- Published
- 2020
- Full Text
- View/download PDF
4. Graphene for radio frequency electronics
- Author
-
Wei, Wei, Dalal, Fadil, Fregonese, Sebastien, Strupinski, Wlodek, Pallecchi, Emiliano, Happy, Henri, Laboratoire d'ingénierie pour les systèmes complexes (UR LISC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Warsaw University of Technology [Warsaw], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Carbon-IEMN (CARBON-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Renatech Network, European Project: 785219, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Carbon - IEMN (CARBON - IEMN), and European Project: 785219,H2020,GrapheneCore2(2018)
- Subjects
Hardware_INTEGRATEDCIRCUITS ,Hardware_PERFORMANCEANDRELIABILITY ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
oral; International audience; In the framework of the European project Flagship Graphene, we have developed several process technologies, for fabricating graphene field-effect transistors, for radio frequency (RF) applications. Depending on the technique used to synthesize graphene, different transistors topologies were designed, given rise to different applications. Graphene materials under consideration include graphene growth on silicon carbide, graphene growth by chemical vapor deposition (CVD) on copper foil. After fabrication of transistors on rigid and on flexible substrates, high frequency characterization of devices is made. Based on the performance of transistors, RF circuits where designed and fabricated.
- Published
- 2020
- Full Text
- View/download PDF
5. Fatigue test on flexible graphene field effect transistors with bottom gate electrode
- Author
-
S. Bensalk, Dalal Fadil, Wei Wei, S. Mhedhbi, Emiliano Pallecchi, Henri Happy, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Materials science ,02 engineering and technology ,Channel width ,Transistors ,01 natural sciences ,law.invention ,[SPI]Engineering Sciences [physics] ,Robustness (computer science) ,law ,0103 physical sciences ,Radio frequency ,Fatigue ,010302 applied physics ,Substrates ,Graphene ,business.industry ,Logic gates ,021001 nanoscience & nanotechnology ,Graphene field effect transistors ,Bottom gate ,Electrode ,Performance evaluation ,Optoelectronics ,Double gate ,0210 nano-technology ,business - Abstract
International audience; Graphene is a promising candidate as channel material for flexible wearable radio frequency devices. In this work we fabricated double gate flexible graphene field effect transistors and characterized their DC and RF performance. Moreover, we performed a fatigue test consisting on a 1000 times dynamical bending at 1 Hz. The banding radius was 40 mm, which correspond to a strain of 0.16%. The DC and RF characterization shows the device performance variation is around 10%. The finding demonstrates the robustness of our GFETs, further work will be needed to determine the physical mechanism that cause the performance change.
- Published
- 2018
- Full Text
- View/download PDF
6. 2D-Graphene Epitaxy on SiC for RF Application: Fabrication, Electrical Characterization and Noise Performance
- Author
-
Henri Happy, Marina Deng, W. Strupinski, Sebastien Fregonese, Emiliano Pallecchi, Wei Wei, Dalal Fadil, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Warsaw University of Technology [Warsaw], Carbon-IEMN (CARBON-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and Carbon - IEMN (CARBON - IEMN)
- Subjects
010302 applied physics ,Materials science ,Condensed matter physics ,Silicon ,Graphene ,Transconductance ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Epitaxy ,Noise figure ,7. Clean energy ,01 natural sciences ,law.invention ,symbols.namesake ,chemistry ,law ,0103 physical sciences ,symbols ,Field-effect transistor ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Raman spectroscopy ,Microwave ,ComputingMilieux_MISCELLANEOUS - Abstract
Two-dimensional graphene grown by chemical vapor deposition (CVD) without the sublimation of the silicon of SiC substrate was used to fabricate field effect transistors. Atomic force microscopy and Raman spectroscopy measurements show the high quality of the graphene. The study of DC, radio frequency and microwave noise characteristics demonstrate reasonable extrinsic value of transconductance $(g_{m})$ , current gain cut-off frequency $(f_{T})$ and minimum noise figure $(NF_{min})$ related to the transistor dimension. For devices with gate length $\pmb{L_{g}=150}$ nm, the transistors show extrinsic current gain cut-off frequency $\pmb{f_{T_{-}extr}=65\mathrm{GHz}}$ associated to the maximum frequency of oscillation $\pmb{f_{max}=28\mathrm{GHz}}$ . The measurement of noise performance shows $\pmb{NF_{min}=4\mathrm{dB}}$ @ 10 GHz.
- Published
- 2018
- Full Text
- View/download PDF
7. Electrical devices from top-down structured platinum diselenide films
- Author
-
Max C. Lemme, Georg S. Duesberg, Chanyoung Yim, Vikram Passi, Niall McEvoy, Emiliano Pallecchi, Dalal Fadil, Cormac Ó Coileáin, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Carbon-IEMN (CARBON-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and Carbon - IEMN (CARBON - IEMN)
- Subjects
Materials science ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,lcsh:Chemistry ,[SPI]Engineering Sciences [physics] ,Electrical resistivity and conductivity ,lcsh:TA401-492 ,General Materials Science ,Electronics ,Sheet resistance ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semimetal ,Electrical contacts ,0104 chemical sciences ,Semiconductor ,lcsh:QD1-999 ,Mechanics of Materials ,Optoelectronics ,lcsh:Materials of engineering and construction. Mechanics of materials ,0210 nano-technology ,Contact area ,business ,Electron-beam lithography - Abstract
npj 2D materials and applications 2(1), 5 (2018). doi:10.1038/s41699-018-0051-9, Published by Nature Publishing Group, London
- Published
- 2018
- Full Text
- View/download PDF
8. Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications
- Author
-
David Mele, Wei Wei, Emiliano Pallecchi, Henri Happy, Abdelkarim Ouerghi, Dalal Fadil, Sarah Mehdhbi, Sylvie Lepilliet, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Carbon-IEMN (CARBON-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and Carbon - IEMN (CARBON - IEMN)
- Subjects
Materials science ,Band gap ,Graphene ,business.industry ,Transistor ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,law.invention ,[SPI]Engineering Sciences [physics] ,law ,Optoelectronics ,Field-effect transistor ,Dry etching ,0210 nano-technology ,business ,Saturation (magnetic) ,Lithography ,Graphene nanoribbons - Abstract
International audience; In this paper we present high frequency field effect transistors based on graphene nanoribbons arrays (GNRFETs). The nanoribbons serve as a channel for the transistors and are fabricated with a process based on e-beam lithography and dry etching of high mobility hydrogen intercalated epitaxial graphene. The widths of the nanoribbons vary from 50 to 20 nm, less than half those measured in previous reports for GNRFETs. Hall measurements reveal that the devices are p-doped, with mobility on the order of 2300 cm(2)/Vs. From DC characteristics, we find that the maximum ratio I-MAX/I-MIN is 5 obtained at 50 nm ribbons width. The IV characteristics of the GNRFETs are slightly non-linear at high bias without a full saturation. Therefore, despite the aggressive scaling of the graphene nanoribbon width, a bandgap is still not observed in our measurements. The high frequency performances of our GNRFETs are already significant at low bias. At 300 mV drain source voltage, the highest intrinsic (extrinsic) cut-off frequency f(t) reaches 82 (18) GHz and the extrinsic maximum oscillation frequency f(max) is 20 GHz, which is promising for low power applications.
- Published
- 2018
- Full Text
- View/download PDF
9. High frequency and noise performance of GFETs
- Author
-
Wei Wei, Emiliano Pallecchi, Sebastien Fregonese, Marina Deng, Gilles Dambrine, Thomas Zimmer, Dalal Fadil, Henri Happy, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Carbon-IEMN (CARBON-IEMN), Renatech Network, European Project: 785219,H2020,GrapheneCore2(2018), and Carbon - IEMN (CARBON - IEMN)
- Subjects
010302 applied physics ,Materials science ,business.industry ,Terahertz radiation ,Graphene ,Amplifier ,Contact resistance ,Electrical engineering ,Linearity ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Graphene field effect transistors ,01 natural sciences ,Noise (electronics) ,Low noise ,law.invention ,law ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Graphene material exhibits a number of outstanding electronic and mechanical properties that make it very attractive for micro and nanoelectronic applications. Considering graphene field effect transistors (GFETs), considerable efforts were made during the recent years, and the devices at state of the art show impressive high frequency cut-off frequencies. The interest of GFET is particularly strong for some high frequency (HF) applications such as high linearity mixer in W-band, THz detection, …. In this paper we will give an overview on the GFETs and will present the devices developed in our Lab. Based on high frequency measurements of noise characteristics of our GFETs, we will point out the impact of technological aspects (such as contact resistance, device structure) on the HF noise performances. The implications of our findings for the development of graphene-based circuit such as low noise amplifiers will be also discussed.
- Published
- 2017
- Full Text
- View/download PDF
10. Direct observation of magnetization reversal and low field magnetoresistance of epitaxial La 0.7Sr 0.3MnO 3/SrTiO 3 (001) thin films at room temperature
- Author
-
Sheng Wu, Stéphane Flament, Paolo Perna, J. Gasnier, M. Saïb, B. Guillet, S Lebargy, Jean-Marc Routoure, B. Renault, Dalal Fadil, Laurence Méchin, Equipe Electronique - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)
- Subjects
Materials science ,Colossal magnetoresistance ,Magnetic domain ,Condensed matter physics ,Nucleation ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Magnetic hysteresis ,01 natural sciences ,Magnetic field ,Magnetization ,Magnetic anisotropy ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,Single domain ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology - Abstract
International audience; We have observed the in-plane magnetic domain arrangement during magnetization reversal in a 40 nm thick La0.7Sr0.3MnO3/SrTiO3 (001) thin film patterned into 500 lm long microbridges of width 50 or 100 lm. Magneto-optical Kerr effect microscopy was used at room temperature and magnetic hysteresis loops were deduced from local averaging of intensity over the microbridge areas. Magnetization reversal proceeds by nucleation and propagation of 180 domain walls. When the magnetic field was applied parallel to the bridge, we observed the nucleation of only one or two domain walls and the reversal occurred by the propagation of them. When the magnetic field was applied perpendicular to the bridge, the reversal occurred mostly by the nucleation of several domain walls. The low field magnetoresistance (MR) and the low frequency noise at zero magnetic field were measured at room temperature. In addition to the linear and reversible colossal MR effect, hysteretic MR versus magnetic field curves could be observed, showing two maxima (minima) when the magnetic field is parallel (perpendicular) to the bridge length. The observed hysteretic MR behaviour is attributed to anisotropic MR inside the 180 Ne'el domain walls.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.