Olivier Thomas, Mélodie Monteil, Cyril Touzé, Institut d'Alembert (IDA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques (LSIS- INSM), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Institut National des Sciences de l'Informatique et ses Interactions-Centre National de la Recherche Scientifique (CNRS), Dynamique des Fluides et Acoustique (DFA), Unité de Mécanique (UME), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Institut d'Alembert ( IDA ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Cachan ( ENS Cachan ), Institut Jean Le Rond d'Alembert ( DALEMBERT ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mécanique des Structures et des Systèmes Couplés ( LMSSC ), Conservatoire National des Arts et Métiers [CNAM] : EA3196, Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécanique ( LSIS- INSM ), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Institut National des Sciences de l'Informatique et ses Interactions-Centre National de la Recherche Scientifique ( CNRS ), Dynamique des Fluides et Acoustique ( DFA ), Unité de Mécanique ( UME ), École Nationale Supérieure de Techniques Avancées ( Univ. Paris-Saclay, ENSTA ParisTech ) -École Nationale Supérieure de Techniques Avancées ( Univ. Paris-Saclay, ENSTA ParisTech ), École Nationale Supérieure de Techniques Avancées ( Univ. Paris-Saclay, ENSTA ParisTech ), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences de l'Informatique et ses Interactions-Université de Provence - Aix-Marseille 1-Université Paul Cézanne - Aix-Marseille 3-Université de la Méditerranée - Aix-Marseille 2
The authors are grateful to Bertrand David (Telecom-ParisTech) for computing the code allowing the STFT filtering procedure used in Section 5.1. The filter has been designed in the framework of the PAFI project (Plateforme d’Aide la facture Instrumentale, www.pafi.fr) which is also thanked.; The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of the peculiar sound of the instrument. A modal analysis first reveals the particular tuning of the modes and the systematic occurence of degenerate modes, from the second one, this feature being a consequence of the tuning and the mode localization. Forced vibrations experiments are then performed to follow precisely the energy exchange between harmonics of the vibration and thus quantify properly the mode couplings. In particular, it is found that energy exchanges are numerous, resulting in complicated frequency response curves even for very small levels of vibration amplitude. Simple models displaying1:2:2 and 1:2:4 internal resonance are then fitted to the measurements, allowing to identify the values of the nonlinear quadratic coupling coefficients resulting from the geometric nonlinearity. The identified 1:2:4 model is finally used to recover the time domain variations of an impacted note in normal playing condition, resulting in an excellent agreement for the temporal behaviour of the first four harmonics.; International audience; The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of the peculiar sound of the instrument. A modal analysis first reveals the particular tuning of the modes and the systematic occurence of degenerate modes, from the second one, this feature being a consequence of the tuning and the mode localization. Forced vibrations experiments are then performed to follow precisely the energy exchange between harmonics of the vibration and thus quantify properly the mode couplings. In particular, it is found that energy exchanges are numerous, resulting in complicated frequency response curves even for very small levels of vibration amplitude. Simple models displaying1:2:2 and 1:2:4 internal resonance are then fitted to the measurements, allowing to identify the values of the nonlinear quadratic coupling coefficients resulting from the geometric nonlinearity. The identified 1:2:4 model is finally used to recover the time domain variations of an impacted note in normal playing condition, resulting in an excellent agreement for the temporal behaviour of the first four harmonics.