41 results on '"Curreli D"'
Search Results
2. A Domestic Program for Liquid Metal PFC Research in Fusion
- Author
-
Andruczyk, D., Maingi, R., Kessel, Chuck, Curreli, D., Kolemen, E., Canik, J., Pint, B., Youchison, D., and Smolentsev, S.
- Published
- 2020
- Full Text
- View/download PDF
3. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
- Author
-
Gates, David A., Anderson, David, Anderson, S., Zarnstorff, M., Spong, Donald A., Weitzner, Harold, Neilson, G. H., Ruzic, D., Andruczyk, D., Harris, J. H., Mynick, H., Hegna, C. C., Schmitz, O., Talmadge, J. N., Curreli, D., Maurer, D., Boozer, A. H., Knowlton, S., Allain, J. P., Ennis, D., Wurden, G., Reiman, A., Lore, J. D., Landreman, Matt, Freidberg, J. P., Hudson, S. R., Porkolab, M., Demers, D., Terry, J., Edlund, E., Lazerson, S. A., Pablant, N., Fonck, R., Volpe, F., Canik, J., Granetz, R., Ware, A., Hanson, J. D., Kumar, S., Deng, C., Likin, K., Cerfon, A., Ram, A., Hassam, A., Prager, S., Paz-Soldan, C., Pueschel, M. J., Joseph, I., and Glasser, A. H.
- Published
- 2018
- Full Text
- View/download PDF
4. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois
- Author
-
Xu, W., Fiflis, P., Szott, M., Kalathiparambil, K., Jung, S., Christenson, M., Haehnlein, I., Kapat, A., Andruczyk, D., Curreli, D., and Ruzic, D.N.
- Published
- 2015
- Full Text
- View/download PDF
5. Chemical sputtering studies of lithiated ATJ graphite
- Author
-
Raman, P., Groll, A., Fiflis, P., Curreli, D., Andruczyk, D., and Ruzic, D.N.
- Published
- 2013
- Full Text
- View/download PDF
6. Heat transfer of TEMHD driven lithium flow in stainless steel trenches
- Author
-
Xu, W., Curreli, D., Andruczyk, D., Mui, T., Switts, R., and Ruzic, D.N.
- Published
- 2013
- Full Text
- View/download PDF
7. Seebeck coefficient measurements on Li, Sn, Ta, Mo, and W
- Author
-
Fiflis, P., Kirsch, L., Andruczyk, D., Curreli, D., and Ruzic, D.N.
- Published
- 2013
- Full Text
- View/download PDF
8. Recent progress in microscale modeling of RF sheaths.
- Author
-
Myra, J. R., Curreli, D., Elias, M. T., Jenkins, T. G., Bonoli, Paul, Pinsker, Robert, and Wang, Xiaojie
- Subjects
- *
PROGRESS , *CYCLOTRONS , *ELECTRIC potential , *ELECTRONS , *PLASMA sheaths , *FLUIDS , *RADIO frequency - Abstract
The microscale properties of RF sheaths in the ion cyclotron range of frequencies (ICRF) are investigated by means of analytical theory, nonlinear fluid and particle-in-cell (PIC) code modeling. Previous work that parametrized RF sheath properties, specifically the RF sheath impedance and the rectified (DC) sheath potential, is generalized to include the effect of net DC current flow through the sheath. Analytical results are presented in the low frequency limit where the displacement current is negligible, and tested against results from a fluid numerical model. It is shown that when the sheath draws DC electron current, the voltage rectification is reduced from the zero current case, and the electron admittance is increased. In separate but related work on the microscale model, selected cases have been simulated with PIC codes to validate, further illuminate and extend fluid model results and their parametrizations. Quantitative agreement in trends for voltage rectification and sheath admittance vs. RF driving voltage is found. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
9. Energy-angle distribution of the ions in the RF sheath of ICRH antennas.
- Author
-
Elias, M., Curreli, D., and Myra, J. R.
- Subjects
- *
PLASMA sheaths , *CYCLOTRON resonance , *ION traps , *ANTENNAS (Electronics) , *IONS - Abstract
Radio-frequency sheaths forming at the surface of ion cyclotron resonance heating (ICRH) actuators in fusion experiments are associated with enhanced impurity sputtering from ICRH plasma-facing components (PFCs). The minimization of impurity fluxes from the ICRH PFC is a vital task for the usage of ICRH systems. Capturing the ion kinetics is important for an accurate description of plasma–material interactions, because the ion dynamics plays a crucial role in RF sheaths. Here, we present a hybrid particle-in-cell (hPIC) model able to capture the kinetic behavior of the ions. We analyze the kinetic ion energy-angle distributions (IEADs) impacting the RF antenna and its dependence on different plasma and RF sheath parameters. In particular, the IEAD dependence on RF frequency and magnetic field alignment is investigated. Using hPIC, we simulated a case emulating the latest experimental campaign from JET. The simulation showed that under specific plasma and RF parameters, the kinetic motion of ions results in a cusp formation in the IEAD. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Effect of net direct current on the properties of radio frequency sheaths: simulation and cross-code comparison.
- Author
-
Myra, J.R., Elias, M.T., Curreli, D., and Jenkins, T.G.
- Subjects
PLASMA sheaths ,PLASMA boundary layers ,RADIO frequency ,PLASMA waves ,SURFACE impedance - Abstract
In order to understand, predict and control ion cyclotron range of frequency interactions with tokamak scrape-off layer plasmas, computational tools which can model radio frequency (RF) sheaths are needed. In particular, models for the effective surface impedance and DC rectified sheath potentials may be coupled with full wave RF simulation codes to predict self-consistent wave fields near surfaces and the resulting power dissipation and plasma–material interactions from ion sputtering. In this study, previous work assuming zero net DC current flow through the sheath is generalized to allow the surface to collect net positive or negative current, as is often observed in experiments. The waveforms, DC potential and RF admittance are investigated by means of analytical theory, nonlinear fluid and particle-in-cell codes. Cross-code comparisons provide detailed model verification and elucidate the roles of ion and electron kinetics. When the sheath draws negative (positive) DC current, the voltage rectification is reduced (increased) compared with the zero-current case, and the magnitude of both the real and imaginary parts of the admittance are increased (reduced). A previous four-input parametrization of the sheath rectification and admittance properties is generalized to include a fifth parameter describing the DC sheath current. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
11. Cross-field diffusion in lowerature plasma discharges of finite length
- Author
-
Curreli, D and Chen, FF
- Subjects
Particle and Plasma Physics ,anomalous diffusion ,Physics::Plasma Physics ,cross-field diffusion ,Molecular ,Nuclear ,short-circuit effect ,Atomic ,low-temperature plasmas ,Applied Physics - Abstract
© 2014 IOP Publishing Ltd. The long-standing problem of plasma diffusion across a magnetic field (B-field) is reviewed, with emphasis on lowerature linear devices of finite length with the magnetic field aligned along an axis of symmetry. In these partially ionized plasmas, cross-field transport is dominated by ion-neutral collisions and can be treated simply with fluid equations. Nonetheless, electron confinement is complicated by sheath effects at the endplates, and these must be accounted for to get agreement with experiment.
- Published
- 2014
12. Numerical model of the radio-frequency magnetic presheath including wall impurities.
- Author
-
Elias, M., Curreli, D., Jenkins, T. G., Myra, J. R., and Wright, J.
- Subjects
- *
PLASMA sheaths , *CYCLOTRON resonance , *RADIO frequency , *ION bombardment , *SURFACES (Technology) , *MAGNETIC fields , *MAGNETRON sputtering - Abstract
Here, we present a numerical fluid plasma model able to capture the enhanced sputtering yield from the Faraday Screen and the Plasma-Facing Components of an Ion Cyclotron Resonance Heating antenna in a fusion machine. The model is a one-dimensional phase-resolved representation of a rectified radio frequency sheath in a magnetic field at an angle with respect to the material surface; the momentum transport of both ions and impurities is computed in the model. The sputtering behavior of the impurities coming off from the wall is obtained from the plasma-material interaction code Fractal-Tridyn. This study analyzes a range of magnetic angles and wave frequencies to parametrically investigate their effect on the energy-angle distributions of the impacting ions and sputtered impurities. Finally, an estimate of the impurity fluxes and of the gross-erosion rate is provided and compared with experimental data available in the literature. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
13. Recent advances in vacum sciences and applications
- Author
-
Stana-Kleinschek, K., Mozetič, M., Ostrikov, K., Ruzic, D. N., Curreli, D., Cvelbar, U., Vesel, A., Primc, G., Leisch, M., Jousten, K., Malyshev, O. B., Hendricks, J. H., Kövér, L., Tagliaferro, A., Conde, O., Silvestre, A. J., Giapintzakis, John, Buljan, M., Radić, N., Dražić, G., Bernstorff, S., Biederman, H., Kylián, O., Hanuš, J., Miloševič, S., Galtayries, A., Dietrich, P., Unger, W., Lehocky, M., Sedlarik, V., Drmota-Petrič, A., Pireaux, J. J., Rogers, J. W., Anderle, M., and Giapintzakis, John [0000-0002-7277-2662]
- Subjects
Cell death ,Acoustics and Ultrasonics ,Vacuum ,Innovative techniques ,Cardio-vascular disease ,Nanotechnology ,Diseases ,Historic preservation ,Plasma ,Interfaces (materials) ,Vacuum applications ,Tissue engineering ,vacuum science ,Pressure measurement ,Carbon nanomaterials ,Conservation technologies ,Chemistry ,Solid surface ,Solid-liquid interfaces ,Optical interferometer ,Interface ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Surfaces ,Carbon nano-materials ,Surface ,Vacuum technology ,Nanoscience ,Plasmas ,Drug delivery ,Thin-film characterization ,Cultural heritage objects ,Plasma medicine - Abstract
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented. © 2014 IOP Publishing Ltd. 47
- Published
- 2014
14. Latest Results From the Hybrid Illinois Device for Research and Applications (HIDRA).
- Author
-
Rizkallah, R., Andruczyk, D., Shone, A., Johnson, D., Jeckell, Z., Marcinko, S., Song, Z., Curreli, D., Bedoya, F., Kapat, A., Allain, J. P., Christenson, M., Szott, M., Stemmley, S., Sandefur, H., Ruzic, D. N., Maingi, R., Hu, J., Zuo, G., and Schmitt, J.
- Subjects
STELLARATORS ,PLASMA flow ,PLASMA diagnostics ,TOKAMAKS ,ELECTRON gun - Abstract
The Hybrid Illinois Device for Research and Applications (HIDRA) is a toroidal fusion device at the University of Illinois at Urbana–Champaign, Urbana, IL, USA. HIDRA is the former WEGA stellarator that was operated at the Max Planck Institut für Plasmaphysik, Greifswald, Germany. The machine is a five-period, $l=2, m=5$ stellarator, with major radius $R_{0}=0.72$ m, and minor radius $a=0.19$ m. Initial heating is achieved with 2.45-GHz electron cyclotron resonance heating and an on-axis magnetic field of $B_{0}=0.087$ T that can go as high as $B_{0}=0.5$ T. HIDRA has the ability to operate as both a stellarator and a tokamak, initially operating in the stellarator mode. The focus of research on HIDRA will be doing dedicated studies on plasma-material interactions (PMIs) using the wealth of knowledge and experience at the Center for Plasma Material Interactions, Urbana, IL, USA. In early 2016, the first experiments were performed on HIDRA. This paper presents some of the first results obtained from the machine such as initial magnetic fields’ measurements and plasma discharges. It also shows the development of the control system being currently implemented and introduces HIDRA-materials analysis tool, the in situ PMI facility that will be mounted on HIDRA in the near future to further enhance the diagnostics and material testing experiments meant to be conducted on the machine. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
15. Helicon plasma hydra-zine : combined micro project overview and development status
- Author
-
Pavarin, D., Ferri, F., Manente, M., Rondini, D., Curreli, D., Guclu, Y., Davide, Melazzi, Suman, S., Bian-chini, G., Packan, D., Elias, P., Bonnet, J., Cardinali, A., Deangelis, R., Mirizzi, F., Tuccilino, A., Tudisco, O., Ahedo, E., Protsan, Y., Loyan, A., Piergentili, F., Grue, K., Put, van, P., Selmo, A., Katsonis, K., Pessana, M., Carlsson, J., Lancellotti, V., and Electromagnetics
- Abstract
Current electric propulsion technology is based on families of thrusters able to cope efficiently with different mission profiles. However, they are not versatile enough to allow a unique propulsion system technology for the entire mission. Helicon –source-based plasma thrusters promise to bea very versatile family of systems, able to be adaptedto very different mission configurations with a substantial reduction in costs and increase in reliability. However, their development is mainly confined in theUS and Japan. Moreover, although helicon plasma sources have been proved to be very efficient, theirfundamental physical mechanisms need still to be investigated. The Helicon Plasma Hydrazine.Combined Micro (HPH.com) is a research project funded by the European Committee within the 7th Framework Programme of the EU and conducted by an international consortium. Objective of this research is to significantly improve knowledge on helicon-based plasma thrusters through deep numerical/theoretical investigations and extensive experimental campaigns, and then to apply the results to the design, optimization and development of a space plasma thruster. The thruster will be specifically conceived to be used on board a mini-satellite for attitude and position control in order to allow low-cost demonstration mission. Finally, to further increase versatility of this system, far beyond that of a standard electric thruster, a detailed feasibility study will be also conducted to evaluate the possibility of using plasmas to heat and or decompose a secondary propellant, in order to develop a two-mode system, high-efficiency low-thrust plasma-thruster mode and a low-efficiency high-trust secondarypropellant- plasma–enhanced mode. In the following a general overview of the HPH.com research project and a description of the current project status are presented.
- Published
- 2010
16. EXPERIMENTAL SET-UP TO TEST A 50 W HELICON PLASMA THRUSTER
- Author
-
Pavarin, Daniele, Ferri, F, Manente, M, Curreli, D, Guclu, Y, Rondini, D, Mariutto, M, Tasinato, L, Carlsson, J, DE ANGELIS, R, Pakan, D, Grue, K, VAN PUT, P, Tijsterman, R, Selmo, A, Loyan, A, and Katsonis, K.
- Subjects
Helicon plasma thruster ,Electric Propulsion - Published
- 2009
17. Helicon Plasma Hydrazine.Combined Micro
- Author
-
Pavarin, D., Ferri, F., Manente, M., Rondini, D., Curreli, D., Guclu, Y., Melazzi, D., Suman, S., Lorenzini, E., Bianchini, G., Packan, D., Elias, P., Bonnet, J., Graziani, F., Santoni, Fabio, Battagliere, M. L., Tuccillo, A., Mirizzi, F., Protsan, Y., Loyan, A., Rybalchenko, I., Ahedo, E., Piergentili, Fabrizio, Ovchinnikov, M., Markelov, G., Montaland, P., Hansen, T., van Put, P., Selmo, A., Katsonis, K., and Pessana, M.
- Published
- 2009
18. On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas.
- Author
-
Cazzola, E., Curreli, D., Markidis, S., and Lapenta, G.
- Subjects
- *
IONS , *ACCELERATION (Mechanics) , *COLLISIONLESS plasmas , *MAGNETIC reconnection , *PLASMA gases , *SYMMETRY (Physics) , *MAGNETIC flux density - Abstract
This work presents an analysis of the ion outflow from magnetic reconnection throughout fully kinetic simulations with typical laboratory plasma values. A symmetric initial configuration for the density and magnetic field is considered across the current sheet. After analyzing the behavior of a set of nine simulations with a reduced mass ratio and with a permuted value of three initial electron temperatures and magnetic field intensity, the best ion acceleration scenario is further studied with a realistic mass ratio in terms of the ion dynamics and energy budget. Interestingly, a series of shock wave structures are observed in the outflow, resembling the shock discontinuities found in recent magnetohydrodynamic simulations. An analysis of the ion outflow at several distances from the reconnection point is presented, in light of possible laboratory applications. The analysis suggests that magnetic reconnection could be used as a tool for plasma acceleration, with applications ranging from electric propulsion to production of ion thermal beams. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
19. Recent advances in vacuum sciences and applications.
- Author
-
Mozetič, M, Ostrikov, K, Ruzic, D N, Curreli, D, Cvelbar, U, Vesel, A, Primc, G, Leisch, M, Jousten, K, Malyshev, O B, Hendricks, J H, Kövér, L, Tagliaferro, A, Conde, O, Silvestre, A J, Giapintzakis, J, Buljan, M, Radić, N, Dražić, G, and Bernstorff, S
- Subjects
OPTICAL interferometers ,THIN films ,ATMOSPHERIC pressure ,BIOMOLECULES ,SOLID-liquid interfaces ,TISSUE engineering - Abstract
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid–liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
20. Periodic Orbits of a Hill-Tether Problem Originated from Collinear Points.
- Author
-
Peláez, J., Lara, M., Bombardelli, C., Lucas, F. R., Sanjurjo-Rivo, M., Curreli, D., Lorenzini, E. C., and Scheeres, D. J.
- Subjects
NATURAL satellites ,THREE-body problem ,FLIGHT ,ORBITS (Astronomy) ,ROTATIONAL motion ,MATHEMATICAL models - Abstract
A tether satellite's behavior about the collinear points of the circular-restricted three-body problem is analyzed systematically for inert tethers. The dumbbell model, which is assumed to be applicable for tethers in fast rotation, is addressed. The known periodic solutions that are modified in the case of tether satellites are discussed with a focus on the Hill problem. A conspicuous configuration is found for tethers rotating parallel to the plane of the primaries, a case in which the attitude of the tether satellite remains constant on average, and it is demonstrated that either lengthening or shortening the tether may lead to orbit stability. Promising results are found for orbits of the vertical family, but regions of stability are also found in the case of halo orbits. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
21. Stability of Electrodynamic Tethers in a Three-Body System.
- Author
-
Zanutto, D., Curreli, D., and Lorenzini, E. C.
- Subjects
ELECTRODYNAMICS ,DYNAMICS ,MAGNETIC fields ,LAGRANGE equations ,EQUATIONS - Abstract
The dynamics of an electrodynamic tether orbiting in a three-body gravitational field near the equilibrium positions of the system is analyzed. First, the perturbed classical three-body problem is derived in general terms; then, the in-plane force perpendicular to the local vertical is analyzed in more detail because of its relevance to electrodynamic tethers. Because of the presence of electrodynamic forces, the locations of equilibrium points are modified from their classical Lagrangian positions (that are valid for a null electrodynamic force) and finally disrupted as the electrodynamic force increases. A linear variational analysis is carried out to characterize the motion of the tethered system around the perturbed equilibrium locations and to compute the variation of the eigenfrequencies versus the intensity of the electrodynamic force. The study of small-amplitude motion about the perturbed equilateral positions has shown the existence of in-plane orbits (Lyapunov) and out-of-plane orbits (Lissajous and halo types) around those points. Large-amplitude orbits, which include nonlinear effects, have been studied using numerical integration of the equations of motion. Numerical tests have proven that when the higher of the two eigenfrequencies is excited, the trajectory, is stable and converges toward the equilibrium point. The analysis is of immediate use to the orbit design of motion around perturbed Lagrangian points of electrodynamic tethers. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
22. Exploration of the Galilean Moons using Electrodynamic Tethers for Propellantless Maneuvers and Self-Powering.
- Author
-
Lorenzini, E. C., Curreli, D., and Zanutto, D.
- Abstract
Recent studies have demonstrated the benefits of using electrodynamic tethers (EDT) for the exploration of the inner region of the Jovian system. Intense planetary magnetic field and reasonable environmental plasma density make the electrodynamic interaction of the conductive tether with the plasmasphere strong. The interaction is responsible for a Lorentz force that can be conveniently used for propellantless maneuvers and extraction of electrical power for on board use. Jupiter and the four Galilean Moons represent an exceptional gravitational environment for the study of the orbital dynamics of an EDT. The dynamics of such a system was analyzed using a 3-body model, consisting of the planet plus one of its moons (Io in this work) and the EDT itself. New and interesting features appear, like for example the possibility to place the tether in equilibrium with respect to a frame co-rotating with the moon at points that do not coincide with the classical Lagrangian points for non-null electrodynamic forces. [ABSTRACT FROM PUBLISHER]
- Published
- 2010
- Full Text
- View/download PDF
23. SPIREs: A Finite-Difference Frequency-Domain electromagnetic solver for inhomogeneous magnetized plasma cylinders
- Author
-
Melazzi, D., Curreli, D., Manente, M., Carlsson, J., and Pavarin, D.
- Subjects
- *
PLASMA gases , *GAS cylinders , *ELECTROMAGNETIC fields , *FINITE differences , *WAVE equation , *FOURIER transforms , *PARAMETER estimation - Abstract
Abstract: We present SPIREs (plaSma Padova Inhomogeneous Radial Electromagnetic solver), a Finite-Difference Frequency-Domain (FDFD) electromagnetic solver in one dimension for the rapid calculation of the electromagnetic fields and the deposited power of a large variety of cylindrical plasma problems. The two Maxwell wave equations have been discretized using a staggered Yee mesh along the radial direction of the cylinder, and Fourier transformed along the other two dimensions and in time. By means of this kind of discretization, we have found that mode-coupling of fast and slow branches can be fully resolved without singularity issues that flawed other well-established methods in the past. Fields are forced by an antenna placed at a given distance from the plasma. The plasma can be inhomogeneous, finite-temperature, collisional, magnetized and multi-species. Finite-temperature Maxwellian effects, comprising Landau and cyclotron damping, have been included by means of the plasma Z dispersion function. Finite Larmor radius effects have been neglected. Radial variations of the plasma parameters are taken into account, thus extending the range of applications to a large variety of inhomogeneous plasma systems. The method proved to be fast and reliable, with accuracy depending on the spatial grid size. Two physical examples are reported: fields in a forced vacuum waveguide with the antenna inside, and forced plasma oscillations in the helicon radiofrequency range. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
24. Lithium pellet production (LiPP): A device for the production of small spheres of lithium.
- Author
-
Fiflis, P., Andrucyzk, D., Roquemore, A. L., McGuire, M., Curreli, D., and Ruzic, D. N.
- Subjects
LITHIUM ,PROTOTYPES ,PLASMA physics ,RAYLEIGH model ,PLASMA jets - Abstract
With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of ΔP = 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D = 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
25. Off-line ionization tests using the surface and the plasma ion sources of the SPES project.
- Author
-
Manzolaro, M., Manente, M., Curreli, D., Vasquez, J., Montano, J., Andrighetto, A., Scarpa, D., Meneghetti, G., and Pavarin, D.
- Subjects
IONIZATION (Atomic physics) ,ION sources ,PLASMA gases ,NUMERICAL calculations ,LABORATORIES ,INTRODUCED species - Abstract
The development of new target ion source systems for the selective production of exotic species (SPES) facility is currently in progress at Legnaro National Laboratories. In this context, the study of ion sources and their performance in terms of ionization efficiency and transversal emittance is a crucial point in order to maximize the available yields, particularly for short-lived isotopes. In this work, preliminary off-line ionization efficiency and emittance measurements for the SPES surface and plasma ion sources are presented. The plasma source emittance measurements are supported by dedicated numerical calculations. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
26. Reformulation of gas discharge theory using data from ICPS and helicons.
- Author
-
Chen, F.F. and Curreli, D.
- Published
- 2011
- Full Text
- View/download PDF
27. DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
- Author
-
M. E. Fenstermacher, J. Abbate, S. Abe, T. Abrams, M. Adams, B. Adamson, N. Aiba, T. Akiyama, P. Aleynikov, E. Allen, S. Allen, H. Anand, J. Anderson, Y. Andrew, T. Andrews, D. Appelt, R. Arbon, N. Ashikawa, A. Ashourvan, M. Aslin, Y. Asnis, M. Austin, D. Ayala, J. Bak, I. Bandyopadhyay, S. Banerjee, K. Barada, L. Bardoczi, J. Barr, E. Bass, D. Battaglia, A. Battey, W. Baumgartner, L. Baylor, J. Beckers, M. Beidler, E. Belli, J. Berkery, T. Bernard, N. Bertelli, M. Beurskens, R. Bielajew, S. Bilgili, B. Biswas, S. Blondel, J. Boedo, I. Bogatu, R. Boivin, T. Bolzonella, M. Bongard, X. Bonnin, P. Bonoli, M. Bonotto, A. Bortolon, S. Bose, N. Bosviel, S. Bouwmans, M. Boyer, W. Boyes, L. Bradley, R. Brambila, D. Brennan, S. Bringuier, L. Brodsky, M. Brookman, J. Brooks, D. Brower, G. Brown, W. Brown, M. Burke, K. Burrell, K. Butler, R. Buttery, I. Bykov, P. Byrne, A. Cacheris, K. Callahan, J. Callen, G. Campbell, J. Candy, J. Canik, P. Cano-Megias, N. Cao, L. Carayannopoulos, T. Carlstrom, W. Carrig, T. Carter, W. Cary, L. Casali, M. Cengher, G. Cespedes Paz, R. Chaban, V. Chan, B. Chapman, I. Char, A. Chattopadhyay, R. Chen, J. Chen, X. Chen, M. Chen, Z. Chen, M. Choi, W. Choi, G. Choi, L. Chousal, C. Chrobak, C. Chrystal, Y. Chung, R. Churchill, M. Cianciosa, J. Clark, M. Clement, S. Coda, A. Cole, C. Collins, W. Conlin, A. Cooper, J. Cordell, B. Coriton, T. Cote, J. Cothran, A. Creely, N. Crocker, C. Crowe, B. Crowley, T. Crowley, D. Cruz-Zabala, D. Cummings, M. Curie, D. Curreli, A. Dal Molin, B. Dannels, A. Dautt-Silva, K. Davda, G. De Tommasi, P. De Vries, G. Degrandchamp, J. Degrassie, D. Demers, S. Denk, S. Depasquale, E. Deshazer, A. Diallo, S. Diem, A. Dimits, R. Ding, S. Ding, W. Ding, T. Do, J. Doane, G. Dong, D. Donovan, J. Drake, W. Drews, J. Drobny, X. Du, H. Du, V. Duarte, D. Dudt, C. Dunn, J. Duran, A. Dvorak, F. Effenberg, N. Eidietis, D. Elder, D. Eldon, R. Ellis, W. Elwasif, D. Ennis, K. Erickson, D. Ernst, M. Fasciana, D. Fedorov, E. Feibush, N. Ferraro, J. Ferreira, J. Ferron, P. Fimognari, D. Finkenthal, R. Fitzpatrick, P. Fox, W. Fox, L. Frassinetti, H. Frerichs, H. Frye, Y. Fu, K. Gage, J. Galdon Quiroga, A. Gallo, Q. Gao, A. Garcia, M. Garcia Munoz, D. Garnier, A. Garofalo, A. Gattuso, D. Geng, K. Gentle, D. Ghosh, L. Giacomelli, S. Gibson, E. Gilson, C. Giroud, F. Glass, A. Glasser, D. Glibert, P. Gohil, R. Gomez, S. Gomez, X. Gong, E. Gonzales, A. Goodman, Y. Gorelov, V. Graber, R. Granetz, T. Gray, D. Green, C. Greenfield, M. Greenwald, B. Grierson, R. Groebner, W. Grosnickle, M. Groth, H. Grunloh, S. Gu, W. Guo, H. Guo, P. Gupta, J. Guterl, W. Guttenfelder, T. Guzman, S. Haar, R. Hager, S. Hahn, M. Halfmoon, T. Hall, K. Hallatschek, F. Halpern, G. Hammett, H. Han, E. Hansen, C. Hansen, M. Hansink, J. Hanson, M. Hanson, G. Hao, A. Harris, R. Harvey, S. Haskey, E. Hassan, A. Hassanein, D. Hatch, R. Hawryluk, W. Hayashi, W. Heidbrink, J. Herfindal, J. Hicok, D. Hill, E. Hinson, C. Holcomb, L. Holland, C. Holland, E. Hollmann, J. Hollocombe, A. Holm, I. Holmes, K. Holtrop, M. Honda, R. Hong, R. Hood, A. Horton, L. Horvath, M. Hosokawa, S. Houshmandyar, N. Howard, E. Howell, D. Hoyt, W. Hu, Y. Hu, Q. Hu, J. Huang, Y. Huang, J. Hughes, T. Human, D. Humphreys, P. Huynh, A. Hyatt, C. Ibanez, L. Ibarra, R. Icasas, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, O. Izacard, V. Izzo, A. Jackson, G. Jacobsen, A. Jaervinen, A. Jalalvand, J. Janhunen, S. Jardin, H. Jarleblad, Y. Jeon, H. Ji, X. Jian, E. Joffrin, A. Johansen, C. Johnson, T. Johnson, C. Jones, I. Joseph, D. Jubas, B. Junge, W. Kalb, R. Kalling, C. Kamath, J. Kang, D. Kaplan, A. Kaptanoglu, S. Kasdorf, J. Kates-Harbeck, P. Kazantzidis, A. Kellman, D. Kellman, C. Kessel, K. Khumthong, E. Kim, H. Kim, J. Kim, S. Kim, K. Kim, C. Kim, W. Kimura, M. King, J. King, J. Kinsey, A. Kirk, B. Kiyan, A. Kleiner, V. Klevarova, R. Knapp, M. Knolker, W. Ko, T. Kobayashi, E. Koch, M. Kochan, B. Koel, M. Koepke, A. Kohn, R. Kolasinski, E. Kolemen, E. Kostadinova, M. Kostuk, G. Kramer, D. Kriete, L. Kripner, S. Kubota, J. Kulchar, K. Kwon, R. La Haye, F. Laggner, H. Lan, R. Lantsov, L. Lao, A. Lasa Esquisabel, C. Lasnier, C. Lau, B. Leard, J. Lee, R. Lee, M. Lee, Y. Lee, C. Lee, S. Lee, M. Lehnen, A. Leonard, E. Leppink, M. Lesher, J. Lestz, J. Leuer, N. Leuthold, X. Li, K. Li, E. Li, G. Li, L. Li, Z. Li, J. Li, Y. Li, Z. Lin, D. Lin, X. Liu, J. Liu, Y. Liu, T. Liu, C. Liu, Z. Liu, D. Liu, A. Liu, A. Loarte-Prieto, L. Lodestro, N. Logan, J. Lohr, B. Lombardo, J. Lore, Q. Luan, T. Luce, T. Luda Di Cortemiglia, N. Luhmann, R. Lunsford, Z. Luo, A. Lvovskiy, B. Lyons, X. Ma, M. Madruga, B. Madsen, C. Maggi, K. Maheshwari, A. Mail, J. Mailloux, R. Maingi, M. Major, M. Makowski, R. Manchanda, C. Marini, A. Marinoni, A. Maris, T. Markovic, L. Marrelli, E. Martin, J. Mateja, G. Matsunaga, R. Maurizio, P. Mauzey, D. Mauzey, G. Mcardle, J. Mcclenaghan, K. Mccollam, C. Mcdevitt, K. Mckay, G. Mckee, A. Mclean, V. Mehta, E. Meier, J. Menard, O. Meneghini, G. Merlo, S. Messer, W. Meyer, C. Michael, C. Michoski, P. Milne, G. Minet, A. Misleh, Y. Mitrishkin, C. Moeller, K. Montes, M. Morales, S. Mordijck, D. Moreau, S. Morosohk, P. Morris, L. Morton, A. Moser, R. Moyer, C. Moynihan, T. Mrazkova, D. Mueller, S. Munaretto, J. Munoz Burgos, C. Murphy, K. Murphy, C. Muscatello, C. Myers, A. Nagy, G. Nandipati, M. Navarro, F. Nave, G. Navratil, R. Nazikian, A. Neff, G. Neilson, T. Neiser, W. Neiswanger, D. Nelson, A. Nelson, F. Nespoli, R. Nguyen, L. Nguyen, X. Nguyen, J. Nichols, M. Nocente, S. Nogami, S. Noraky, N. Norausky, M. Nornberg, R. Nygren, T. Odstrcil, D. Ogas, T. Ogorman, S. Ohdachi, Y. Ohtani, M. Okabayashi, M. Okamoto, L. Olavson, E. Olofsson, M. Omullane, R. Oneill, D. Orlov, W. Orvis, T. Osborne, D. Pace, G. Paganini Canal, A. Pajares Martinez, L. Palacios, C. Pan, Q. Pan, R. Pandit, M. Pandya, A. Pankin, Y. Park, J. Park, S. Parker, P. Parks, M. Parsons, B. Patel, C. Pawley, C. Paz-Soldan, W. Peebles, S. Pelton, R. Perillo, C. Petty, Y. Peysson, D. Pierce, A. Pigarov, L. Pigatto, D. Piglowski, S. Pinches, R. Pinsker, P. Piovesan, N. Piper, A. Pironti, R. Pitts, J. Pizzo, U. Plank, M. Podesta, E. Poli, F. Poli, D. Ponce, Z. Popovic, M. Porkolab, G. Porter, C. Powers, S. Powers, R. Prater, Q. Pratt, I. Pusztai, J. Qian, X. Qin, O. Ra, T. Rafiq, T. Raines, R. Raman, J. Rauch, A. Raymond, C. Rea, M. Reich, A. Reiman, S. Reinhold, M. Reinke, R. Reksoatmodjo, Q. Ren, Y. Ren, J. Ren, M. Rensink, J. Renteria, T. Rhodes, J. Rice, R. Roberts, J. Robinson, P. Rodriguez Fernandez, T. Rognlien, A. Rosenthal, S. Rosiello, J. Rost, J. Roveto, W. Rowan, R. Rozenblat, J. Ruane, D. Rudakov, J. Ruiz Ruiz, R. Rupani, S. Saarelma, S. Sabbagh, J. Sachdev, J. Saenz, S. Saib, M. Salewski, A. Salmi, B. Sammuli, C. Samuell, A. Sandorfi, C. Sang, J. Sarff, O. Sauter, K. Schaubel, L. Schmitz, O. Schmitz, J. Schneider, P. Schroeder, K. Schultz, E. Schuster, J. Schwartz, F. Sciortino, F. Scotti, J. Scoville, A. Seltzman, S. Seol, I. Sfiligoi, M. Shafer, S. Sharapov, H. Shen, Z. Sheng, T. Shepard, S. Shi, Y. Shibata, G. Shin, D. Shiraki, R. Shousha, H. Si, P. Simmerling, G. Sinclair, J. Sinha, P. Sinha, G. Sips, T. Sizyuk, C. Skinner, A. Sladkomedova, T. Slendebroek, J. Slief, R. Smirnov, J. Smith, S. Smith, D. Smith, J. Snipes, G. Snoep, A. Snyder, P. Snyder, E. Solano, W. Solomon, J. Song, A. Sontag, V. Soukhanovskii, J. Spendlove, D. Spong, J. Squire, C. Srinivasan, W. Stacey, G. Staebler, L. Stagner, T. Stange, P. Stangeby, R. Stefan, R. Stemprok, D. Stephan, J. Stillerman, T. Stoltzfus-Dueck, W. Stonecipher, S. Storment, E. Strait, D. Su, L. Sugiyama, Y. Sun, P. Sun, Z. Sun, A. Sun, D. Sundstrom, C. Sung, J. Sungcoco, W. Suttrop, Y. Suzuki, T. Suzuki, A. Svyatkovskiy, C. Swee, R. Sweeney, C. Sweetnam, G. Szepesi, M. Takechi, T. Tala, K. Tanaka, X. Tang, S. Tang, Y. Tao, R. Tao, D. Taussig, T. Taylor, K. Teixeira, K. Teo, A. Theodorsen, D. Thomas, K. Thome, A. Thorman, A. Thornton, A. Ti, M. Tillack, N. Timchenko, R. Tinguely, R. Tompkins, J. Tooker, A. Torrezan De Sousa, G. Trevisan, S. Tripathi, A. Trujillo Ochoa, D. Truong, C. Tsui, F. Turco, A. Turnbull, M. Umansky, E. Unterberg, P. Vaezi, P. Vail, J. Valdez, W. Valkis, B. Van Compernolle, J. Van Galen, R. Van Kampen, M. Van Zeeland, G. Verdoolaege, N. Vianello, B. Victor, E. Viezzer, S. Vincena, M. Wade, F. Waelbroeck, J. Wai, T. Wakatsuki, M. Walker, G. Wallace, R. Waltz, W. Wampler, L. Wang, H. Wang, Y. Wang, Z. Wang, G. Wang, S. Ward, M. Watkins, J. Watkins, W. Wehner, Y. Wei, M. Weiland, D. Weisberg, A. Welander, A. White, R. White, S. Wiesen, R. Wilcox, T. Wilks, M. Willensdorfer, H. Wilson, A. Wingen, M. Wolde, M. Wolff, K. Woller, A. Wolz, H. Wong, S. Woodruff, M. Wu, Y. Wu, S. Wukitch, G. Wurden, W. Xiao, R. Xie, Z. Xing, X. Xu, C. Xu, G. Xu, Z. Yan, X. Yang, S. Yang, T. Yokoyama, R. Yoneda, M. Yoshida, K. You, T. Younkin, J. Yu, M. Yu, G. Yu, Q. Yuan, L. Zaidenberg, L. Zakharov, A. Zamengo, S. Zamperini, M. Zarnstorff, E. Zeger, K. Zeller, L. Zeng, M. Zerbini, L. Zhang, X. Zhang, R. Zhang, B. Zhang, J. Zhang, L. Zhao, B. Zhao, Y. Zheng, L. Zheng, B. Zhu, J. Zhu, Y. Zhu, M. Zsutty, M. Zuin, Fenstermacher, M. E., Abbate, J., Abe, S., Abrams, T., Adams, M., Adamson, B., Aiba, N., Akiyama, T., Aleynikov, P., Allen, E., Allen, S., Anand, H., Anderson, J., Andrew, Y., Andrews, T., Appelt, D., Arbon, R., Ashikawa, N., Ashourvan, A., Aslin, M., Asnis, Y., Austin, M., Ayala, D., Bak, J., Bandyopadhyay, I., Banerjee, S., Barada, K., Bardoczi, L., Barr, J., Bass, E., Battaglia, D., Battey, A., Baumgartner, W., Baylor, L., Beckers, J., Beidler, M., Belli, E., Berkery, J., Bernard, T., Bertelli, N., Beurskens, M., Bielajew, R., Bilgili, S., Biswas, B., Blondel, S., Boedo, J., Bogatu, I., Boivin, R., Bolzonella, T., Bongard, M., Bonnin, X., Bonoli, P., Bonotto, M., Bortolon, A., Bose, S., Bosviel, N., Bouwmans, S., Boyer, M., Boyes, W., Bradley, L., Brambila, R., Brennan, D., Bringuier, S., Brodsky, L., Brookman, M., Brooks, J., Brower, D., Brown, G., Brown, W., Burke, M., Burrell, K., Butler, K., Buttery, R., Bykov, I., Byrne, P., Cacheris, A., Callahan, K., Callen, J., Campbell, G., Candy, J., Canik, J., Cano-Megias, P., Cao, N., Carayannopoulos, L., Carlstrom, T., Carrig, W., Carter, T., Cary, W., Casali, L., Cengher, M., Cespedes Paz, G., Chaban, R., Chan, V., Chapman, B., Char, I., Chattopadhyay, A., Chen, R., Chen, J., Chen, X., Chen, M., Chen, Z., Choi, M., Choi, W., Choi, G., Chousal, L., Chrobak, C., Chrystal, C., Chung, Y., Churchill, R., Cianciosa, M., Clark, J., Clement, M., Coda, S., Cole, A., Collins, C., Conlin, W., Cooper, A., Cordell, J., Coriton, B., Cote, T., Cothran, J., Creely, A., Crocker, N., Crowe, C., Crowley, B., Crowley, T., Cruz-Zabala, D., Cummings, D., Curie, M., Curreli, D., Dal Molin, A., Dannels, B., Dautt-Silva, A., Davda, K., De Tommasi, G., De Vries, P., Degrandchamp, G., Degrassie, J., Demers, D., Denk, S., Depasquale, S., Deshazer, E., Diallo, A., Diem, S., Dimits, A., Ding, R., Ding, S., Ding, W., Do, T., Doane, J., Dong, G., Donovan, D., Drake, J., Drews, W., Drobny, J., Du, X., Du, H., Duarte, V., Dudt, D., Dunn, C., Duran, J., Dvorak, A., Effenberg, F., Eidietis, N., Elder, D., Eldon, D., Ellis, R., Elwasif, W., Ennis, D., Erickson, K., Ernst, D., Fasciana, M., Fedorov, D., Feibush, E., Ferraro, N., Ferreira, J., Ferron, J., Fimognari, P., Finkenthal, D., Fitzpatrick, R., Fox, P., Fox, W., Frassinetti, L., Frerichs, H., Frye, H., Fu, Y., Gage, K., Galdon Quiroga, J., Gallo, A., Gao, Q., Garcia, A., Garcia Munoz, M., Garnier, D., Garofalo, A., Gattuso, A., Geng, D., Gentle, K., Ghosh, D., Giacomelli, L., Gibson, S., Gilson, E., Giroud, C., Glass, F., Glasser, A., Glibert, D., Gohil, P., Gomez, R., Gomez, S., Gong, X., Gonzales, E., Goodman, A., Gorelov, Y., Graber, V., Granetz, R., Gray, T., Green, D., Greenfield, C., Greenwald, M., Grierson, B., Groebner, R., Grosnickle, W., Groth, M., Grunloh, H., Gu, S., Guo, W., Guo, H., Gupta, P., Guterl, J., Guttenfelder, W., Guzman, T., Haar, S., Hager, R., Hahn, S., Halfmoon, M., Hall, T., Hallatschek, K., Halpern, F., Hammett, G., Han, H., Hansen, E., Hansen, C., Hansink, M., Hanson, J., Hanson, M., Hao, G., Harris, A., Harvey, R., Haskey, S., Hassan, E., Hassanein, A., Hatch, D., Hawryluk, R., Hayashi, W., Heidbrink, W., Herfindal, J., Hicok, J., Hill, D., Hinson, E., Holcomb, C., Holland, L., Holland, C., Hollmann, E., Hollocombe, J., Holm, A., Holmes, I., Holtrop, K., Honda, M., Hong, R., Hood, R., Horton, A., Horvath, L., Hosokawa, M., Houshmandyar, S., Howard, N., Howell, E., Hoyt, D., Hu, W., Hu, Y., Hu, Q., Huang, J., Huang, Y., Hughes, J., Human, T., Humphreys, D., Huynh, P., Hyatt, A., Ibanez, C., Ibarra, L., Icasas, R., Ida, K., Igochine, V., In, Y., Inoue, S., Isayama, A., Izacard, O., Izzo, V., Jackson, A., Jacobsen, G., Jaervinen, A., Jalalvand, A., Janhunen, J., Jardin, S., Jarleblad, H., Jeon, Y., Ji, H., Jian, X., Joffrin, E., Johansen, A., Johnson, C., Johnson, T., Jones, C., Joseph, I., Jubas, D., Junge, B., Kalb, W., Kalling, R., Kamath, C., Kang, J., Kaplan, D., Kaptanoglu, A., Kasdorf, S., Kates-Harbeck, J., Kazantzidis, P., Kellman, A., Kellman, D., Kessel, C., Khumthong, K., Kim, E., Kim, H., Kim, J., Kim, S., Kim, K., Kim, C., Kimura, W., King, M., King, J., Kinsey, J., Kirk, A., Kiyan, B., Kleiner, A., Klevarova, V., Knapp, R., Knolker, M., Ko, W., Kobayashi, T., Koch, E., Kochan, M., Koel, B., Koepke, M., Kohn, A., Kolasinski, R., Kolemen, E., Kostadinova, E., Kostuk, M., Kramer, G., Kriete, D., Kripner, L., Kubota, S., Kulchar, J., Kwon, K., La Haye, R., Laggner, F., Lan, H., Lantsov, R., Lao, L., Lasa Esquisabel, A., Lasnier, C., Lau, C., Leard, B., Lee, J., Lee, R., Lee, M., Lee, Y., Lee, C., Lee, S., Lehnen, M., Leonard, A., Leppink, E., Lesher, M., Lestz, J., Leuer, J., Leuthold, N., Li, X., Li, K., Li, E., Li, G., Li, L., Li, Z., Li, J., Li, Y., Lin, Z., Lin, D., Liu, X., Liu, J., Liu, Y., Liu, T., Liu, C., Liu, Z., Liu, D., Liu, A., Loarte-Prieto, A., Lodestro, L., Logan, N., Lohr, J., Lombardo, B., Lore, J., Luan, Q., Luce, T., Luda Di Cortemiglia, T., Luhmann, N., Lunsford, R., Luo, Z., Lvovskiy, A., Lyons, B., Ma, X., Madruga, M., Madsen, B., Maggi, C., Maheshwari, K., Mail, A., Mailloux, J., Maingi, R., Major, M., Makowski, M., Manchanda, R., Marini, C., Marinoni, A., Maris, A., Markovic, T., Marrelli, L., Martin, E., Mateja, J., Matsunaga, G., Maurizio, R., Mauzey, P., Mauzey, D., Mcardle, G., Mcclenaghan, J., Mccollam, K., Mcdevitt, C., Mckay, K., Mckee, G., Mclean, A., Mehta, V., Meier, E., Menard, J., Meneghini, O., Merlo, G., Messer, S., Meyer, W., Michael, C., Michoski, C., Milne, P., Minet, G., Misleh, A., Mitrishkin, Y., Moeller, C., Montes, K., Morales, M., Mordijck, S., Moreau, D., Morosohk, S., Morris, P., Morton, L., Moser, A., Moyer, R., Moynihan, C., Mrazkova, T., Mueller, D., Munaretto, S., Munoz Burgos, J., Murphy, C., Murphy, K., Muscatello, C., Myers, C., Nagy, A., Nandipati, G., Navarro, M., Nave, F., Navratil, G., Nazikian, R., Neff, A., Neilson, G., Neiser, T., Neiswanger, W., Nelson, D., Nelson, A., Nespoli, F., Nguyen, R., Nguyen, L., Nguyen, X., Nichols, J., Nocente, M., Nogami, S., Noraky, S., Norausky, N., Nornberg, M., Nygren, R., Odstrcil, T., Ogas, D., Ogorman, T., Ohdachi, S., Ohtani, Y., Okabayashi, M., Okamoto, M., Olavson, L., Olofsson, E., Omullane, M., Oneill, R., Orlov, D., Orvis, W., Osborne, T., Pace, D., Paganini Canal, G., Pajares Martinez, A., Palacios, L., Pan, C., Pan, Q., Pandit, R., Pandya, M., Pankin, A., Park, Y., Park, J., Parker, S., Parks, P., Parsons, M., Patel, B., Pawley, C., Paz-Soldan, C., Peebles, W., Pelton, S., Perillo, R., Petty, C., Peysson, Y., Pierce, D., Pigarov, A., Pigatto, L., Piglowski, D., Pinches, S., Pinsker, R., Piovesan, P., Piper, N., Pironti, A., Pitts, R., Pizzo, J., Plank, U., Podesta, M., Poli, E., Poli, F., Ponce, D., Popovic, Z., Porkolab, M., Porter, G., Powers, C., Powers, S., Prater, R., Pratt, Q., Pusztai, I., Qian, J., Qin, X., Ra, O., Rafiq, T., Raines, T., Raman, R., Rauch, J., Raymond, A., Rea, C., Reich, M., Reiman, A., Reinhold, S., Reinke, M., Reksoatmodjo, R., Ren, Q., Ren, Y., Ren, J., Rensink, M., Renteria, J., Rhodes, T., Rice, J., Roberts, R., Robinson, J., Rodriguez Fernandez, P., Rognlien, T., Rosenthal, A., Rosiello, S., Rost, J., Roveto, J., Rowan, W., Rozenblat, R., Ruane, J., Rudakov, D., Ruiz Ruiz, J., Rupani, R., Saarelma, S., Sabbagh, S., Sachdev, J., Saenz, J., Saib, S., Salewski, M., Salmi, A., Sammuli, B., Samuell, C., Sandorfi, A., Sang, C., Sarff, J., Sauter, O., Schaubel, K., Schmitz, L., Schmitz, O., Schneider, J., Schroeder, P., Schultz, K., Schuster, E., Schwartz, J., Sciortino, F., Scotti, F., Scoville, J., Seltzman, A., Seol, S., Sfiligoi, I., Shafer, M., Sharapov, S., Shen, H., Sheng, Z., Shepard, T., Shi, S., Shibata, Y., Shin, G., Shiraki, D., Shousha, R., Si, H., Simmerling, P., Sinclair, G., Sinha, J., Sinha, P., Sips, G., Sizyuk, T., Skinner, C., Sladkomedova, A., Slendebroek, T., Slief, J., Smirnov, R., Smith, J., Smith, S., Smith, D., Snipes, J., Snoep, G., Snyder, A., Snyder, P., Solano, E., Solomon, W., Song, J., Sontag, A., Soukhanovskii, V., Spendlove, J., Spong, D., Squire, J., Srinivasan, C., Stacey, W., Staebler, G., Stagner, L., Stange, T., Stangeby, P., Stefan, R., Stemprok, R., Stephan, D., Stillerman, J., Stoltzfus-Dueck, T., Stonecipher, W., Storment, S., Strait, E., Su, D., Sugiyama, L., Sun, Y., Sun, P., Sun, Z., Sun, A., Sundstrom, D., Sung, C., Sungcoco, J., Suttrop, W., Suzuki, Y., Suzuki, T., Svyatkovskiy, A., Swee, C., Sweeney, R., Sweetnam, C., Szepesi, G., Takechi, M., Tala, T., Tanaka, K., Tang, X., Tang, S., Tao, Y., Tao, R., Taussig, D., Taylor, T., Teixeira, K., Teo, K., Theodorsen, A., Thomas, D., Thome, K., Thorman, A., Thornton, A., Ti, A., Tillack, M., Timchenko, N., Tinguely, R., Tompkins, R., Tooker, J., Torrezan De Sousa, A., Trevisan, G., Tripathi, S., Trujillo Ochoa, A., Truong, D., Tsui, C., Turco, F., Turnbull, A., Umansky, M., Unterberg, E., Vaezi, P., Vail, P., Valdez, J., Valkis, W., Van Compernolle, B., Van Galen, J., Van Kampen, R., Van Zeeland, M., Verdoolaege, G., Vianello, N., Victor, B., Viezzer, E., Vincena, S., Wade, M., Waelbroeck, F., Wai, J., Wakatsuki, T., Walker, M., Wallace, G., Waltz, R., Wampler, W., Wang, L., Wang, H., Wang, Y., Wang, Z., Wang, G., Ward, S., Watkins, M., Watkins, J., Wehner, W., Wei, Y., Weiland, M., Weisberg, D., Welander, A., White, A., White, R., Wiesen, S., Wilcox, R., Wilks, T., Willensdorfer, M., Wilson, H., Wingen, A., Wolde, M., Wolff, M., Woller, K., Wolz, A., Wong, H., Woodruff, S., Wu, M., Wu, Y., Wukitch, S., Wurden, G., Xiao, W., Xie, R., Xing, Z., Xu, X., Xu, C., Xu, G., Yan, Z., Yang, X., Yang, S., Yokoyama, T., Yoneda, R., Yoshida, M., You, K., Younkin, T., Yu, J., Yu, M., Yu, G., Yuan, Q., Zaidenberg, L., Zakharov, L., Zamengo, A., Zamperini, S., Zarnstorff, M., Zeger, E., Zeller, K., Zeng, L., Zerbini, M., Zhang, L., Zhang, X., Zhang, R., Zhang, B., Zhang, J., Zhao, L., Zhao, B., Zheng, Y., Zheng, L., Zhu, B., Zhu, J., Zhu, Y., Zsutty, M., Zuin, M., Fenstermacher, M, Abbate, J, Abe, S, Abrams, T, Adams, M, Adamson, B, Aiba, N, Akiyama, T, Aleynikov, P, Allen, E, Allen, S, Anand, H, Anderson, J, Andrew, Y, Andrews, T, Appelt, D, Arbon, R, Ashikawa, N, Ashourvan, A, Aslin, M, Asnis, Y, Austin, M, Ayala, D, Bak, J, Bandyopadhyay, I, Banerjee, S, Barada, K, Bardoczi, L, Barr, J, Bass, E, Battaglia, D, Battey, A, Baumgartner, W, Baylor, L, Beckers, J, Beidler, M, Belli, E, Berkery, J, Bernard, T, Bertelli, N, Beurskens, M, Bielajew, R, Bilgili, S, Biswas, B, Blondel, S, Boedo, J, Bogatu, I, Boivin, R, Bolzonella, T, Bongard, M, Bonnin, X, Bonoli, P, Bonotto, M, Bortolon, A, Bose, S, Bosviel, N, Bouwmans, S, Boyer, M, Boyes, W, Bradley, L, Brambila, R, Brennan, D, Bringuier, S, Brodsky, L, Brookman, M, Brooks, J, Brower, D, Brown, G, Brown, W, Burke, M, Burrell, K, Butler, K, Buttery, R, Bykov, I, Byrne, P, Cacheris, A, Callahan, K, Callen, J, Campbell, G, Candy, J, Canik, J, Cano-Megias, P, Cao, N, Carayannopoulos, L, Carlstrom, T, Carrig, W, Carter, T, Cary, W, Casali, L, Cengher, M, Paz, G, Chaban, R, Chan, V, Chapman, B, Char, I, Chattopadhyay, A, Chen, R, Chen, J, Chen, X, Chen, M, Chen, Z, Choi, M, Choi, W, Choi, G, Chousal, L, Chrobak, C, Chrystal, C, Chung, Y, Churchill, R, Cianciosa, M, Clark, J, Clement, M, Coda, S, Cole, A, Collins, C, Conlin, W, Cooper, A, Cordell, J, Coriton, B, Cote, T, Cothran, J, Creely, A, Crocker, N, Crowe, C, Crowley, B, Crowley, T, Cruz-Zabala, D, Cummings, D, Curie, M, Curreli, D, Dal Molin, A, Dannels, B, Dautt-Silva, A, Davda, K, De Tommasi, G, De Vries, P, Degrandchamp, G, Degrassie, J, Demers, D, Denk, S, Depasquale, S, Deshazer, E, Diallo, A, Diem, S, Dimits, A, Ding, R, Ding, S, Ding, W, Do, T, Doane, J, Dong, G, Donovan, D, Drake, J, Drews, W, Drobny, J, Du, X, Du, H, Duarte, V, Dudt, D, Dunn, C, Duran, J, Dvorak, A, Effenberg, F, Eidietis, N, Elder, D, Eldon, D, Ellis, R, Elwasif, W, Ennis, D, Erickson, K, Ernst, D, Fasciana, M, Fedorov, D, Feibush, E, Ferraro, N, Ferreira, J, Ferron, J, Fimognari, P, Finkenthal, D, Fitzpatrick, R, Fox, P, Fox, W, Frassinetti, L, Frerichs, H, Frye, H, Fu, Y, Gage, K, Quiroga, J, Gallo, A, Gao, Q, Garcia, A, Munoz, M, Garnier, D, Garofalo, A, Gattuso, A, Geng, D, Gentle, K, Ghosh, D, Giacomelli, L, Gibson, S, Gilson, E, Giroud, C, Glass, F, Glasser, A, Glibert, D, Gohil, P, Gomez, R, Gomez, S, Gong, X, Gonzales, E, Goodman, A, Gorelov, Y, Graber, V, Granetz, R, Gray, T, Green, D, Greenfield, C, Greenwald, M, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Gu, S, Guo, W, Guo, H, Gupta, P, Guterl, J, Guttenfelder, W, Guzman, T, Haar, S, Hager, R, Hahn, S, Halfmoon, M, Hall, T, Hallatschek, K, Halpern, F, Hammett, G, Han, H, Hansen, E, Hansen, C, Hansink, M, Hanson, J, Hanson, M, Hao, G, Harris, A, Harvey, R, Haskey, S, Hassan, E, Hassanein, A, Hatch, D, Hawryluk, R, Hayashi, W, Heidbrink, W, Herfindal, J, Hicok, J, Hill, D, Hinson, E, Holcomb, C, Holland, L, Holland, C, Hollmann, E, Hollocombe, J, Holm, A, Holmes, I, Holtrop, K, Honda, M, Hong, R, Hood, R, Horton, A, Horvath, L, Hosokawa, M, Houshmandyar, S, Howard, N, Howell, E, Hoyt, D, Hu, W, Hu, Y, Hu, Q, Huang, J, Huang, Y, Hughes, J, Human, T, Humphreys, D, Huynh, P, Hyatt, A, Ibanez, C, Ibarra, L, Icasas, R, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Izacard, O, Izzo, V, Jackson, A, Jacobsen, G, Jaervinen, A, Jalalvand, A, Janhunen, J, Jardin, S, Jarleblad, H, Jeon, Y, Ji, H, Jian, X, Joffrin, E, Johansen, A, Johnson, C, Johnson, T, Jones, C, Joseph, I, Jubas, D, Junge, B, Kalb, W, Kalling, R, Kamath, C, Kang, J, Kaplan, D, Kaptanoglu, A, Kasdorf, S, Kates-Harbeck, J, Kazantzidis, P, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, E, Kim, H, Kim, J, Kim, S, Kim, K, Kim, C, Kimura, W, King, M, King, J, Kinsey, J, Kirk, A, Kiyan, B, Kleiner, A, Klevarova, V, Knapp, R, Knolker, M, Ko, W, Kobayashi, T, Koch, E, Kochan, M, Koel, B, Koepke, M, Kohn, A, Kolasinski, R, Kolemen, E, Kostadinova, E, Kostuk, M, Kramer, G, Kriete, D, Kripner, L, Kubota, S, Kulchar, J, Kwon, K, La Haye, R, Laggner, F, Lan, H, Lantsov, R, Lao, L, Esquisabel, A, Lasnier, C, Lau, C, Leard, B, Lee, J, Lee, R, Lee, M, Lee, Y, Lee, C, Lee, S, Lehnen, M, Leonard, A, Leppink, E, Lesher, M, Lestz, J, Leuer, J, Leuthold, N, Li, X, Li, K, Li, E, Li, G, Li, L, Li, Z, Li, J, Li, Y, Lin, Z, Lin, D, Liu, X, Liu, J, Liu, Y, Liu, T, Liu, C, Liu, Z, Liu, D, Liu, A, Loarte-Prieto, A, Lodestro, L, Logan, N, Lohr, J, Lombardo, B, Lore, J, Luan, Q, Luce, T, Di Cortemiglia, T, Luhmann, N, Lunsford, R, Luo, Z, Lvovskiy, A, Lyons, B, Ma, X, Madruga, M, Madsen, B, Maggi, C, Maheshwari, K, Mail, A, Mailloux, J, Maingi, R, Major, M, Makowski, M, Manchanda, R, Marini, C, Marinoni, A, Maris, A, Markovic, T, Marrelli, L, Martin, E, Mateja, J, Matsunaga, G, Maurizio, R, Mauzey, P, Mauzey, D, Mcardle, G, Mcclenaghan, J, Mccollam, K, Mcdevitt, C, Mckay, K, Mckee, G, Mclean, A, Mehta, V, Meier, E, Menard, J, Meneghini, O, Merlo, G, Messer, S, Meyer, W, Michael, C, Michoski, C, Milne, P, Minet, G, Misleh, A, Mitrishkin, Y, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moreau, D, Morosohk, S, Morris, P, Morton, L, Moser, A, Moyer, R, Moynihan, C, Mrazkova, T, Mueller, D, Munaretto, S, Burgos, J, Murphy, C, Murphy, K, Muscatello, C, Myers, C, Nagy, A, Nandipati, G, Navarro, M, Nave, F, Navratil, G, Nazikian, R, Neff, A, Neilson, G, Neiser, T, Neiswanger, W, Nelson, D, Nelson, A, Nespoli, F, Nguyen, R, Nguyen, L, Nguyen, X, Nichols, J, Nocente, M, Nogami, S, Noraky, S, Norausky, N, Nornberg, M, Nygren, R, Odstrcil, T, Ogas, D, Ogorman, T, Ohdachi, S, Ohtani, Y, Okabayashi, M, Okamoto, M, Olavson, L, Olofsson, E, Omullane, M, Oneill, R, Orlov, D, Orvis, W, Osborne, T, Pace, D, Canal, G, Martinez, A, Palacios, L, Pan, C, Pan, Q, Pandit, R, Pandya, M, Pankin, A, Park, Y, Park, J, Parker, S, Parks, P, Parsons, M, Patel, B, Pawley, C, Paz-Soldan, C, Peebles, W, Pelton, S, Perillo, R, Petty, C, Peysson, Y, Pierce, D, Pigarov, A, Pigatto, L, Piglowski, D, Pinches, S, Pinsker, R, Piovesan, P, Piper, N, Pironti, A, Pitts, R, Pizzo, J, Plank, U, Podesta, M, Poli, E, Poli, F, Ponce, D, Popovic, Z, Porkolab, M, Porter, G, Powers, C, Powers, S, Prater, R, Pratt, Q, Pusztai, I, Qian, J, Qin, X, Ra, O, Rafiq, T, Raines, T, Raman, R, Rauch, J, Raymond, A, Rea, C, Reich, M, Reiman, A, Reinhold, S, Reinke, M, Reksoatmodjo, R, Ren, Q, Ren, Y, Ren, J, Rensink, M, Renteria, J, Rhodes, T, Rice, J, Roberts, R, Robinson, J, Fernandez, P, Rognlien, T, Rosenthal, A, Rosiello, S, Rost, J, Roveto, J, Rowan, W, Rozenblat, R, Ruane, J, Rudakov, D, Ruiz, J, Rupani, R, Saarelma, S, Sabbagh, S, Sachdev, J, Saenz, J, Saib, S, Salewski, M, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sarff, J, Sauter, O, Schaubel, K, Schmitz, L, Schmitz, O, Schneider, J, Schroeder, P, Schultz, K, Schuster, E, Schwartz, J, Sciortino, F, Scotti, F, Scoville, J, Seltzman, A, Seol, S, Sfiligoi, I, Shafer, M, Sharapov, S, Shen, H, Sheng, Z, Shepard, T, Shi, S, Shibata, Y, Shin, G, Shiraki, D, Shousha, R, Si, H, Simmerling, P, Sinclair, G, Sinha, J, Sinha, P, Sips, G, Sizyuk, T, Skinner, C, Sladkomedova, A, Slendebroek, T, Slief, J, Smirnov, R, Smith, J, Smith, S, Smith, D, Snipes, J, Snoep, G, Snyder, A, Snyder, P, Solano, E, Solomon, W, Song, J, Sontag, A, Soukhanovskii, V, Spendlove, J, Spong, D, Squire, J, Srinivasan, C, Stacey, W, Staebler, G, Stagner, L, Stange, T, Stangeby, P, Stefan, R, Stemprok, R, Stephan, D, Stillerman, J, Stoltzfus-Dueck, T, Stonecipher, W, Storment, S, Strait, E, Su, D, Sugiyama, L, Sun, Y, Sun, P, Sun, Z, Sun, A, Sundstrom, D, Sung, C, Sungcoco, J, Suttrop, W, Suzuki, Y, Suzuki, T, Svyatkovskiy, A, Swee, C, Sweeney, R, Sweetnam, C, Szepesi, G, Takechi, M, Tala, T, Tanaka, K, Tang, X, Tang, S, Tao, Y, Tao, R, Taussig, D, Taylor, T, Teixeira, K, Teo, K, Theodorsen, A, Thomas, D, Thome, K, Thorman, A, Thornton, A, Ti, A, Tillack, M, Timchenko, N, Tinguely, R, Tompkins, R, Tooker, J, De Sousa, A, Trevisan, G, Tripathi, S, Ochoa, A, Truong, D, Tsui, C, Turco, F, Turnbull, A, Umansky, M, Unterberg, E, Vaezi, P, Vail, P, Valdez, J, Valkis, W, Van Compernolle, B, Van Galen, J, Van Kampen, R, Van Zeeland, M, Verdoolaege, G, Vianello, N, Victor, B, Viezzer, E, Vincena, S, Wade, M, Waelbroeck, F, Wai, J, Wakatsuki, T, Walker, M, Wallace, G, Waltz, R, Wampler, W, Wang, L, Wang, H, Wang, Y, Wang, Z, Wang, G, Ward, S, Watkins, M, Watkins, J, Wehner, W, Wei, Y, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Wiesen, S, Wilcox, R, Wilks, T, Willensdorfer, M, Wilson, H, Wingen, A, Wolde, M, Wolff, M, Woller, K, Wolz, A, Wong, H, Woodruff, S, Wu, M, Wu, Y, Wukitch, S, Wurden, G, Xiao, W, Xie, R, Xing, Z, Xu, X, Xu, C, Xu, G, Yan, Z, Yang, X, Yang, S, Yokoyama, T, Yoneda, R, Yoshida, M, You, K, Younkin, T, Yu, J, Yu, M, Yu, G, Yuan, Q, Zaidenberg, L, Zakharov, L, Zamengo, A, Zamperini, S, Zarnstorff, M, Zeger, E, Zeller, K, Zeng, L, Zerbini, M, Zhang, L, Zhang, X, Zhang, R, Zhang, B, Zhang, J, Zhao, L, Zhao, B, Zheng, Y, Zheng, L, Zhu, B, Zhu, J, Zhu, Y, Zsutty, M, Zuin, M, Lawrence Livermore National Laboratory, Princeton Plasma Physics Laboratory, Princeton University, General Atomics, Max-Planck-Institut für Plasmaphysik, Imperial College London, National Institute for Fusion Science, Universidade de São Paulo, University of Texas at Austin, ITER, College of William and Mary, University of California Los Angeles, University of California San Diego, Columbia University, Massachusetts Institute of Technology, Oak Ridge National Laboratory, Eindhoven University of Technology, Oak Ridge Associated Universities, West Virginia University, University of Tennessee, Knoxville, National Research Council of Italy, Stony Brook University, Purdue University, University of Seville, University of Science and Technology of China, Carnegie Mellon University, Institute for Plasma Research, Peking University, University of California Davis, University of California Irvine, Commonwealth Fusion Systems, University of Liverpool, University of Illinois at Urbana-Champaign, University of Milan - Bicocca, Georgia Institute of Technology, Southwestern Institute of Physics, University of Toronto, Auburn University, Polytechnic University of Turin, Universidade Lisboa, Association CCFE, KTH Royal Institute of Technology, San Diego State University, Durham University, Lehigh University, Fusion and Plasma Physics, University of Washington, Department of Applied Physics, Sandia National Laboratories, Ghent University, Technical University of Denmark, CEA, University of Colorado Boulder, Harvard University, National Technical University of Athens, Coventry University, University of Stuttgart, Czech Academy of Sciences, Harvey Mudd College, Seoul National University, Donghua University, University of York, Dalian University of Technology, University of California Berkeley, Los Alamos National Laboratory, United States Department of Energy, University of British Columbia, Pacific Northwest National Laboratory, University of Wisconsin, Michigan State University, University of Strathclyde, Pennsylvania State University, Rensselaer Polytechnic Institute, University of Southern California, Chalmers University of Technology, University of Virginia, University of Naples Federico II, University of Oxford, VTT Technical Research Centre of Finland, National Institute of Technology, University of Connecticut, DIFFER, CIEMAT, Hanyang University, Brigham Young University, UiT The Arctic University of Norway, Australian National University, Russian Research Centre Kurchatov Institute, Forschungszentrum Jülich, Zhejiang University, The University of Tokyo, University of Michigan, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Aalto-yliopisto, Aalto University, DIII-D Team, Complex Ionized Media, Elementary Processes in Gas Discharges, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, and Control Systems Technology
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Technology and Engineering ,DIII-D ,Nuclear engineering ,TOKAMAKS ,MITIGATION ,law.invention ,Plasma physics ,mitigation ,law ,plasma physic ,tokamak ,Physics ,Core-edge integration ,Basis (linear algebra) ,plasma physics ,core-edge integration ,scenarios ,Fusion power ,Condensed Matter Physics ,SCENARIOS ,fusion energy ,Fusion energy - Abstract
Funding Information: This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 and DE-AC52-07NA27344. Publisher Copyright: © 2022 IAEA, Vienna. DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
- Published
- 2022
28. Transition from edge-localized to center-localized power deposition in helicon discharges.
- Author
-
Curreli, D.
- Abstract
In radiofrequency (RF) helicon discharges the electromagnetic power is transferred from the RF field irradiated by the antenna to the plasma medium by means of plasma-wave coupling of the electromagnetic wave with the electrons. For the common industrial frequencies of tens of MHz, and for typical pressures of few Pascals, the power deposition occurs mostly at the edge of the discharge. In these conditions, ionization and electron heating occur in a layer close to the chamber walls, where a consistent fraction of the plasma is rapidly lost by diffusion toward the surface. The remaining fraction of plasma diffuses inward toward the center of the discharge, setting up a uniform and almost flat density profile, used in applications. A one-dimensional model considering both the plasma-wave coupling of the electrons with the RF wave and the macroscopic transport of ions and neutrals along the radial dimension of a cylindrical processing chamber has been derived and used to evaluate the profiles at equilibrium. The model has been validated through Langmuir probe measurements in helicon processing chambers. The numerical model has then been used to study the power-coupling behavior of the discharge when the pressure of the neutral gas is decreased. When the Knudsen number of the neutral gas approaches unity and in conditions of slightly magnetized discharge, the power deposition shifts from being edge-localized to center-localized, thus reducing the particle fluxes toward the walls and increasing the efficiency of the coupling. [ABSTRACT FROM PUBLISHER]
- Published
- 2011
- Full Text
- View/download PDF
29. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches.
- Author
-
Jung, S., Christenson, M., Curreli, D., Bryniarski, C., Andruczyk, D., and Ruzic, D.N.
- Subjects
- *
LITHIUM , *METALLIC plasmas , *PULSED radiation , *TOKAMAKS , *LIQUID metals , *LANGMUIR probes , *PLASMA-wall interactions - Abstract
To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1] , a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
30. Wetting properties of liquid lithium on select fusion relevant surfaces.
- Author
-
Fiflis, P., Press, A., Xu, W., Andruczyk, D., Curreli, D., and Ruzic, D.N.
- Subjects
- *
LITHIUM , *METALLIC surfaces , *WETTING , *FUSION reactors , *PLASMA confinement , *GETTERING , *MAGNETOHYDRODYNAMICS - Abstract
Research into lithium as a plasma facing component material has illustrated its ability to engender low recycling operation at the plasma edge leading to higher energy confinement times. Introducing lithium into a practical fusion device would almost certainly require the lithium to be flowing to maintain a clean lithium surface for gettering. Several conceptual designs have been proposed, like the LiMIT concept of UIUC (Ruzic, 2011). Critical to the implementation of these devices is understanding the interactions of liquid lithium with various surfaces. For a device that relies on thermoelectric magnetohydrodynamic drive, such as the LiMIT concept, two of the critical interactions are the wetting of materials by lithium, which may be characterized by the contact angle between the lithium and the surface, and the relative thermopower between lithium and potential substrate materials. Experiments have been performed into the contact angle of liquid lithium droplets with various surfaces, as well as methods to decrease the contact angle of lithium with a given surface. The contact angle, as well as its dependence on temperature was measured. For example, at 200 °C, tungsten registers a contact angle of 130°, whereas above its wetting temperature of 350 °C, the contact angle is less than 80°. Glow discharge cleaning of the target surface as well as evaporation of a thin layer of liquid lithium onto the surface prior to performing wetting measurements were both found to decrease the wetting temperature. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
31. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome
- Author
-
Maria Orietta Borghi, Asmaa Beltagy, Emirena Garrafa, Daniele Curreli, Germana Cecchini, Caterina Bodio, Claudia Grossi, Simonetta Blengino, Angela Tincani, Franco Franceschini, Laura Andreoli, Maria Grazia Lazzaroni, Silvia Piantoni, Stefania Masneri, Francesca Crisafulli, Duilio Brugnoni, Maria Lorenza Muiesan, Massimo Salvetti, Gianfranco Parati, Erminio Torresani, Michael Mahler, Francesca Heilbron, Francesca Pregnolato, Martino Pengo, Francesco Tedesco, Nicola Pozzi, Pier Luigi Meroni, Borghi, M, Beltagy, A, Garrafa, E, Curreli, D, Cecchini, G, Bodio, C, Grossi, C, Blengino, S, Tincani, A, Franceschini, F, Andreoli, L, Lazzaroni, M, Piantoni, S, Masneri, S, Crisafulli, F, Brugnoni, D, Muiesan, M, Salvetti, M, Parati, G, Torresani, E, Mahler, M, Heilbron, F, Pregnolato, F, Pengo, M, Tedesco, F, Pozzi, N, and Meroni, P
- Subjects
0301 basic medicine ,lcsh:Immunologic diseases. Allergy ,COVID-19 ,anti-phospholipid antibodies ,autoimmunity ,prothrombin ,thrombosis ,β2-glycoprotein I ,Coronavirus disease 2019 (COVID-19) ,Immunology ,β ,anti-phospholipid antibodie ,Epitope ,Immunoglobulin G ,03 medical and health sciences ,0302 clinical medicine ,glycoprotein I ,Antiphospholipid syndrome ,medicine ,Coagulopathy ,Beta 2-Glycoprotein I ,thrombosi ,Immunology and Allergy ,Original Research ,Lupus anticoagulant ,biology ,business.industry ,C-reactive protein ,medicine.disease ,Thrombosis ,030104 developmental biology ,Immunoglobulin M ,Concomitant ,biology.protein ,Antibody ,business ,lcsh:RC581-607 ,030215 immunology - Abstract
BackgroundCritically ill patients with coronavirus disease 2019 (COVID-19) have a profound hypercoagulable state and often develop coagulopathy which leads to organ failure and death. Because of a prolonged activated partial-thromboplastin time (aPTT), a relationship with anti-phospholipid antibodies (aPL) has been proposed, but results are controversial. Functional assays for aPL (i.e., lupus anticoagulant) can be influenced by concomitant anticoagulation and/or high levels of C reactive protein. The presence of anti-cardiolipin (aCL), anti-beta2-glycoprotein I (anti-β2GPI) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies was not investigated systematically. Epitope specificity of anti-β2GPI antibodies was not reported.ObjectiveTo evaluate the prevalence and the clinical association of aPL in a large cohort of COVID-19 patients, and to characterize the epitope specificity of anti-β2GPI antibodies.MethodsELISA and chemiluminescence assays were used to test 122 sera of patients suffering from severe COVID-19. Of them, 16 displayed major thrombotic events.ResultsAnti-β2GPI IgG/IgA/IgM were the most frequent in 15.6/6.6/9.0% of patients, while aCL IgG/IgM were detected in 5.7/6.6% by ELISA. Comparable values were found by chemiluminescence. aPS/PT IgG/IgM were detectable in 2.5 and 9.8% by ELISA. No association between thrombosis and aPL was found. Reactivity against domain 1 and 4-5 of β2GPI was limited to 3/58 (5.2%) tested sera for each domain and did not correlate with aCL/anti-β2GPI nor with thrombosis.ConclusionsaPL show a low prevalence in COVID-19 patients and are not associated with major thrombotic events. aPL in COVID-19 patients are mainly directed against β2GPI but display an epitope specificity different from antibodies in antiphospholipid syndrome.
- Published
- 2020
32. TO SHOw how we have been ENgaged in the APS FiELD (What we learned on APS collaborating with Professor Yehuda Shoenfeld).
- Author
-
Meroni PL, Borghi MO, Raschi E, Grossi C, Lonati PA, Bodio C, Da Via A, Curreli D, and Cecchini G
- Subjects
- Animals, Humans, beta 2-Glycoprotein I immunology, beta 2-Glycoprotein I metabolism, COVID-19 immunology, History, 20th Century, History, 21st Century, SARS-CoV-2 immunology, Antibodies, Antiphospholipid immunology, Antibodies, Antiphospholipid metabolism, Antiphospholipid Syndrome immunology
- Abstract
The present review reports the history of our scientific collaboration with Professor Shoenfeld's group. The collaboration started at the end of the 80s and was mainly focused on studies on the pathogenetic mechanisms of the anti-phospholipid syndrome (APS). Following the initial collaborative studies on antibodies against endothelium in systemic autoimmune vasculitis, we were able to use a similar strategy in APS. This line of research has resulted in the characterization of beta 2 glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) as mechanisms capable of mediating an endothelial perturbation crucial for the pathogenesis of APS. Thanks to these studies, the collaboration has led to the characterization of the membrane receptors for β2GPI and the cellular signaling resulting from antibody binding. This mechanism has also been shown to mediate the aPL effect on other cell types involved in APS pathogenesis. Finally, the exchange of information made it possible to replicate and extend the setting of animal models of the syndrome, which proved to be valuable tools for understanding the pathogenesis of the syndrome. It has been a long story recently refueled by common studies on the similarity of pro-inflammatory and pro-coagulant endotheliopathy in APS and in COVID-19., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests. Pier Luigi Meroni reports financial support was provided by IRCCS Istituto Auxologico Italiano. Pier Luigi Meroni reports a relationship with IRCCS Istituto Auxologico Italiano that includes: funding grants. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
33. Disinfectant caps in vitro effectiveness.
- Author
-
Rimoldi SG, La Cava L, Palladino C, Piacenza M, Vimercati S, Cristina P, Salari F, Curreli D, Gismondo MR, Foschi A, Giustivi D, Diotto V, Bizzi E, Calloni M, Casella F, Martini E, Donadoni M, Cogliati C, and Gidaro A
- Abstract
Background: Catheter-related bloodstream infections (CRBSIs) are a major cause of morbidity and mortality among hospitalized patients. Different studies suggest that the use of disinfectant caps (DCs) significantly reduces the rate of CRBSIs. The first purpose of this study is to analyze, through an in-vitro -model, the antiseptic effect of DCs produced by two manufacturers; the second aim is to assess potential differences in terms of effectiveness between the two manufacturers' products., Methods: A know concentration of thirteen different microorganisms was incubated with the sponge drenched in antimicrobial fluid inside DCs and cultured through several assays to investigate the disinfectant effectiveness of some commercially available caps. Disinfectant properties were evaluated under two different conditions: baseline (DCs placed on the needle-free connectors (NFCs) and stress test (DCs directly applied to the catheter hub)., Results: Both manufacturers overcame the basal tests (fourteen different assays). Regarding stress tests: the only significant bacterial load was found for Serratia marcescens (10
4 CFU/mL in ICU Medical™), both at 90 and 180 minutes after incubation; due to the low load, MDR Acinetobacter baumannii was not considered significant (<103 CFU/mL in BD PureHub™)., Conclusions: Our results confirm what was reported in BD PureHub™ datasheet and add data not previously shown by ICU Medical™. Moreover, no difference was observed between the two manufacturers products: the use of both DCs on NFCs was able to reclaim the catheter lumen. These findings support the routine use of DCs with NFCs, as part of a structured bundle of interventions, to reduce the incidence of CRBSIs., Competing Interests: Conflict of interest: The Authors declare no conflicts of interest.- Published
- 2023
- Full Text
- View/download PDF
34. Traditional Cultures versus Next Generation Sequencing for Suspected Orthopedic Infection: Experience Gained from a Reference Centre.
- Author
-
Rimoldi SG, Brioschi D, Curreli D, Salari F, Pagani C, Tamoni A, Longobardi C, Bosari R, Rizzo A, Landonio S, Coen M, Passerini M, Gismondo MR, Gori A, and Manzotti A
- Abstract
(Background) The diagnosis and the antimicrobial treatment of orthopedic infection are challenging, especially in cases with culture-negative results. New molecular methods, such as next-generation sequencing (NGS), promise to overcome some limitations of the standard culture, such as the detection of difficult-to-grow bacteria. However, data are scarce regarding the impact of molecular techniques in real-life scenarios. (Methods) We included cases of suspected orthopedic infection treated with surgery from May 2021 to September 2023. We combined traditional cultures with NGS. For NGS, we performed a metagenomic analysis of ribosomal 16s, and we queried dedicated taxonomic libraries to identify the species. To avoid false positive results, we set a cut-off of 1000 counts of the percentage of frequency of reads. (Results) We included 49 patients in our study. Our results show the presence of bacteria in 36/49 (73%) and 29/49 (59%) cases studied with NGS and traditional cultures, respectively. The concordance rate was 61%. Among the 19/49 discordant cases, in 11/19 cases, cultures were negative and NGS positive; in 4/19, cultures were positive and NGS negative; and in the remaining 4/19, different species were detected by traditional cultures and NGS. (Conclusions) Difficult-to-grow microorganisms, such as slow-growing anaerobic bacteria, were better detected by NGS compared to traditional culture in our study. However, more data to distinguish between true pathogens and contaminants are needed. NGS can be an additional tool to be used for the diagnosis of orthopedic infections and the choice of appropriate antimicrobial therapy.
- Published
- 2023
- Full Text
- View/download PDF
35. Stochastic optimization of a uranium oxide reaction mechanism using plasma flow reactor measurements.
- Author
-
Finko M, Koroglu B, Rodriguez KE, Rose TP, Crowhurst JC, Curreli D, Radousky HB, and Knight KB
- Abstract
In this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000-5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments. The parameter space of a uranium oxide reaction mechanism is then explored via Monte Carlo sampling using objective functions to quantify the model-experiment agreement. The Monte Carlo results are subsequently refined using a genetic algorithm to obtain an experimentally corroborated set of reaction pathways and rate coefficients. Out of 12 reaction channels targeted for optimization, four channels are found to be well constrained across all optimization runs while another three channels are constrained in select cases. The optimized channels highlight the importance of the OH radical in oxidizing uranium in the PFR. This study comprises a first step toward producing a comprehensive experimentally validated reaction mechanism for gas phase uranium molecular species formation., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
36. Monkeypox infection in a hemopoietic stem cell and heart transplant recipient.
- Author
-
Raccagni AR, Mileto D, Candela C, Bruzzesi E, Bracchitta F, Marcatti M, Curreli D, Ciceri F, Gismondo MR, Castagna A, and Nozza S
- Subjects
- Humans, Mpox (monkeypox), Hematopoietic Stem Cell Transplantation adverse effects, Heart Transplantation adverse effects
- Published
- 2023
- Full Text
- View/download PDF
37. Dependence of the damage in optical metal/dielectric coatings on the energy of ions in irradiation experiments for space qualification.
- Author
-
Pelizzo MG, Corso AJ, Santi G, Hübner R, Garoli D, Doyle D, Lubin P, Cohen AN, Erlikhman J, Favaro G, Bazzan M, Drobny J, Curreli D, and Umansky M
- Abstract
Terrestrial accelerator facilities can generate ion beams which enable the testing of the resistance of materials and thin film coatings to be used in the space environment. In this work, a [Formula: see text]/Al bi-layer coating has been irradiated with a [Formula: see text] beam at three different energies. The same flux and dose have been used in order to investigate the damage dependence on the energy. The energies were selected to be in the range 4-100 keV, in order to consider those associated to the quiet solar wind and to the particles present in the near-Earth space environment. The optical, morphological and structural modifications have been investigated by using various techniques. Surprisingly, the most damaged sample is the one irradiated at the intermediate energy, which, on the other hand, corresponds to the case in which the interface between the two layers is more stressed. Results demonstrate that ion energies for irradiation tests must be carefully selected to properly qualify space components.
- Published
- 2021
- Full Text
- View/download PDF
38. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome.
- Author
-
Borghi MO, Beltagy A, Garrafa E, Curreli D, Cecchini G, Bodio C, Grossi C, Blengino S, Tincani A, Franceschini F, Andreoli L, Lazzaroni MG, Piantoni S, Masneri S, Crisafulli F, Brugnoni D, Muiesan ML, Salvetti M, Parati G, Torresani E, Mahler M, Heilbron F, Pregnolato F, Pengo M, Tedesco F, Pozzi N, and Meroni PL
- Subjects
- Aged, Aged, 80 and over, Antibodies, Anticardiolipin blood, Antiphospholipid Syndrome blood, COVID-19 blood, COVID-19 virology, Critical Illness, Enzyme-Linked Immunosorbent Assay, Epitopes immunology, Female, Humans, Immunoglobulin A blood, Immunoglobulin A immunology, Immunoglobulin G blood, Immunoglobulin G immunology, Immunoglobulin M blood, Immunoglobulin M immunology, Luminescent Measurements, Male, Middle Aged, Phosphatidylserines immunology, Prothrombin immunology, Thrombosis immunology, beta 2-Glycoprotein I immunology, Antibodies, Anticardiolipin immunology, Antiphospholipid Syndrome immunology, COVID-19 immunology, SARS-CoV-2
- Abstract
Background: Critically ill patients with coronavirus disease 2019 (COVID-19) have a profound hypercoagulable state and often develop coagulopathy which leads to organ failure and death. Because of a prolonged activated partial-thromboplastin time (aPTT), a relationship with anti-phospholipid antibodies (aPLs) has been proposed, but results are controversial. Functional assays for aPL (i.e., lupus anticoagulant) can be influenced by concomitant anticoagulation and/or high levels of C reactive protein. The presence of anti-cardiolipin (aCL), anti-beta2-glycoprotein I (anti-β
2 GPI), and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies was not investigated systematically. Epitope specificity of anti-β2 GPI antibodies was not reported., Objective: To evaluate the prevalence and the clinical association of aPL in a large cohort of COVID-19 patients, and to characterize the epitope specificity of anti-β2 GPI antibodies., Methods: ELISA and chemiluminescence assays were used to test 122 sera of patients suffering from severe COVID-19. Of them, 16 displayed major thrombotic events., Results: Anti-β2 GPI IgG/IgA/IgM was the most frequent in 15.6/6.6/9.0% of patients, while aCL IgG/IgM was detected in 5.7/6.6% by ELISA. Comparable values were found by chemiluminescence. aPS/PT IgG/IgM were detectable in 2.5 and 9.8% by ELISA. No association between thrombosis and aPL was found. Reactivity against domain 1 and 4-5 of β2 GPI was limited to 3/58 (5.2%) tested sera for each domain and did not correlate with aCL/anti-β2 GPI nor with thrombosis., Conclusions: aPL show a low prevalence in COVID-19 patients and are not associated with major thrombotic events. aPL in COVID-19 patients are mainly directed against β2 GPI but display an epitope specificity different from antibodies in antiphospholipid syndrome., (Copyright © 2020 Borghi, Beltagy, Garrafa, Curreli, Cecchini, Bodio, Grossi, Blengino, Tincani, Franceschini, Andreoli, Lazzaroni, Piantoni, Masneri, Crisafulli, Brugnoni, Muiesan, Salvetti, Parati, Torresani, Mahler, Heilbron, Pregnolato, Pengo, Tedesco, Pozzi and Meroni.)- Published
- 2020
- Full Text
- View/download PDF
39. Experimental Investigation of Uranium Volatility during Vapor Condensation.
- Author
-
Koroglu B, Dai Z, Finko M, Armstrong MR, Crowhurst JC, Curreli D, Weisz DG, Radousky HB, Knight KB, and Rose TP
- Abstract
The predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. In this study, we show that kinetically driven processes in a system of rapidly decreasing temperature can result in substantial deviations from chemical equilibrium. This can cause uranium to condense out in oxidation states (e.g., UO
3 vs UO2 ) that have different vapor pressures, significantly affecting uranium transport. To demonstrate this, we synthesized uranium oxide nanoparticles using a flow reactor under controlled conditions of temperature, pressure, and oxygen concentration. The atomized chemical reactants passing through an inductively coupled plasma cool from ∼5000 to 1000 K within milliseconds and form nanoparticles inside a flow reactor. The ex situ analysis of particulates by transmission electron microscopy revealed 2-10 nm crystallites of fcc-UO2 or α-UO3 depending on the amount of oxygen in the system. α-UO3 is the least thermodynamically preferred polymorph of UO3 . The absence of stable uranium oxides with intermediate stoichiometries (e.g., U3 O8 ) and sensitivity of the uranium oxidation states to local redox conditions highlight the importance of in situ measurements at high temperatures. Therefore, we developed a laser-based diagnostic to detect uranium oxide particles as they are formed inside the flow reactor. Our in situ measurements allowed us to quantify the changes in the number densities of the uranium oxide nanoparticles (e.g., UO3 ) as a function of oxygen gas concentration. Our results indicate that uranium can prefer to be in metastable crystal forms (i.e., α-UO3 ) that have higher vapor pressures than the refractory form (i.e., UO2 ) depending on the oxygen abundance in the surrounding environment. This demonstrates that the equilibrium processes may not dominate during rapid condensation processes, and thus kinetic models are required to fully describe uranium transport subsequent to nuclear incidents.- Published
- 2020
- Full Text
- View/download PDF
40. Blood Cell-Bound C4d as a Marker of Complement Activation in Patients With the Antiphospholipid Syndrome.
- Author
-
Lonati PA, Scavone M, Gerosa M, Borghi MO, Pregnolato F, Curreli D, Podda G, Femia EA, Barcellini W, Cattaneo M, Tedesco F, and Meroni PL
- Subjects
- Antiphospholipid Syndrome diagnosis, Biomarkers, Blood Platelets immunology, Blood Platelets metabolism, Case-Control Studies, Complement C3 immunology, Complement C3 metabolism, Erythrocytes immunology, Erythrocytes metabolism, Female, Humans, Male, Antiphospholipid Syndrome immunology, Antiphospholipid Syndrome metabolism, Blood Cells metabolism, Complement Activation immunology, Complement C4 immunology, Complement C4 metabolism
- Abstract
Antiphospholipid syndrome (APS) is a chronic and disabling condition characterized by recurrent thrombosis and miscarriages mediated by antibodies against phospholipid-binding proteins (aPL), such as beta
2 glycoprotein I (β2 GPI). Complement is involved in APS animal models and complement deposits have been documented in placenta and thrombotic vessels despite normal serum levels. Analysis of circulating blood cells coated with C4d displays higher sensitivity than the conventional assays that measure soluble native complement components and their unstable activation products in systemic lupus erythematosus (SLE). As C4d-coated blood cell count has been reported to be more sensitive than serum levels of complement components and their activation products in systemic lupus erythematosus (SLE) patients, we decided to evaluate the percentage of C4d positive B lymphocytes (BC4d), erythrocytes (EC4d), and platelets (PC4d) in primary APS patients and asymptomatic aPL positive carriers as marker of complement activation in APS. We assessed by flow cytometry the percentages of BC4d, EC4d, and PC4d in primary APS (PAPS; n. 23), 8 asymptomatic aPL positive carriers, 11 APS-associated SLE (SAPS), 17 aPL positive SLE, 16 aPL negative SLE, 8 aPL negative patients with previous thrombosis, 11 immune thrombocytopenia (ITP) patients, and 26 healthy subjects. In addition, we used an in vitro model to evaluate the ability of a monoclonal anti-β2 GPI antibody (MBB2) to bind to normal resting or activated platelets and fix complement. EC4d and PC4d percentages were significantly higher in PAPS and aPL carriers as well as aPL positive SLE and SAPS than in aPL negative controls. The highest values were found in PAPS and in SAPS. The EC4d and PC4d percentages were significantly correlated with serum C3/C4 and anti-β2 GPI/anti-cardiolipin IgG. In vitro studies showed that MBB2 bound to activated platelets only and induced C4d deposition. The detection of the activation product C4d on circulating erythrocytes and platelets supports the role of complement activation in APS. Complement may represent a new therapeutic target for better treatment and prevention of disability of APS patients.- Published
- 2019
- Full Text
- View/download PDF
41. Effects of Plume Hydrodynamics and Oxidation on the Composition of a Condensing Laser-Induced Plasma.
- Author
-
Weisz DG, Crowhurst JC, Finko MS, Rose TP, Koroglu B, Trappitsch R, Radousky HB, Siekhaus WJ, Armstrong MR, Isselhardt BH, Azer M, and Curreli D
- Abstract
High-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. Using emission spectroscopy acquired after ablation of a SrZrO
3 target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO2 are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO. We deduced the time-scale of oxygen entrainment into the laser ablation plume using an18 O2 environment by observing the in-growth of Zr18 O in the emission spectra relative to Zr16 O, which was formed by reaction of Zr with16 O from the target itself. Using temporally resolved plume-imaging, we determined that ZrO formed more readily at early times, volumetrically in the plume, while SrO formed later in time, around the periphery. Using a simple temperature-dependent reaction model, we have illustrated that the formation sequence of these oxides subsequent to ablation is predictable to first order.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.