5 results on '"Courbet F"'
Search Results
2. A three-segmented model for the vertical distribution of annual ringarea. Application to Cedrus atlantica Manetti
- Author
-
Courbet, F.
- Subjects
MODELING (Sculpture) ,FOREST management - Abstract
A segmented model for the vertical distribution of cross-sectional ring area was built with data from 32 Atlas cedars sampled in the south of France. The trees, with contrasted social status, were chosen within eight stands as different as possible in age, site index, and density. The first segmentation point of the model indicates the base of the efficient crown (i.e. really contributing to the bole thicknessincrement) and the second one the upper limit of the butt swell. Statistical relations were established to predict the parameters of the individual model from standard whole-tree characteristics. The overall final model predicts the cross-sectional area of the ring from girth and basal area increment at breast height, total height, and heightto the base of the full live crown. This relation is useful to predict the evolution of stem profile and the tree volume increment. It can be easily incorporated into an individual tree growth and yield model. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF
3. A demo-genetic model shows how silviculture reduces natural density-dependent selection in tree populations.
- Author
-
Godineau C, Fririon V, Beudez N, de Coligny F, Courbet F, Ligot G, Oddou-Muratorio S, Sanchez L, and Lefèvre F
- Abstract
Biological production systems and conservation programs benefit from and should care for evolutionary processes. Developing evolution-oriented strategies requires knowledge of the evolutionary consequences of management across timescales. Here, we used an individual-based demo-genetic modelling approach to study the interactions and feedback between tree thinning, genetic evolution, and forest stand dynamics. The model combines processes that jointly drive survival and mating success-tree growth, competition and regeneration-with genetic variation of quantitative traits related to these processes. In various management and disturbance scenarios, the evolutionary rates predicted by the coupled demo-genetic model for a growth-related trait, vigor, fit within the range of empirical estimates found in the literature for wild plant and animal populations. We used this model to simulate non-selective silviculture and disturbance scenarios over four generations of trees. We characterized and quantified the effect of thinning frequencies and intensities and length of the management cycle on viability selection driven by competition and fecundity selection. The thinning regimes had a drastic long-term effect on the evolutionary rate of vigor over generations, potentially reaching 84% reduction, depending on management intensity, cycle length and disturbance regime. The reduction of genetic variance by viability selection within each generation was driven by changes in genotypic frequencies rather than by gene diversity, resulting in low-long-term erosion of the variance across generations, despite short-term fluctuations within generations. The comparison among silviculture and disturbance scenarios was qualitatively robust to assumptions on the genetic architecture of the trait. Thus, the evolutionary consequences of management result from the interference between human interventions and natural evolutionary processes. Non-selective thinning, as considered here, reduces the intensity of natural selection, while selective thinning (on tree size or other criteria) might reduce or reinforce it depending on the forester's tree choice and thinning intensity., Competing Interests: All the co‐authors disclose any potential sources of conflict of interest., (© 2023 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
4. Globally, tree fecundity exceeds productivity gradients.
- Author
-
Journé V, Andrus R, Aravena MC, Ascoli D, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Donoso Calderon S, Dormont L, Maria Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Lambers JHR, Hoshizaki K, Ibanez I, Johnstone JF, Kabeya D, Kays R, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Qiu T, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Marle HSV, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, and Clark JS
- Subjects
- Biodiversity, Climate, Fertility, Seeds, Forests, Trees
- Abstract
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics., (© 2022 John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
5. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery.
- Author
-
Qiu T, Andrus R, Aravena MC, Ascoli D, Bergeron Y, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Bragg DC, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Cleavitt NL, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kabeya D, Kilner CL, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Ledwon M, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Schlesinger WH, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Sun IF, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, and Clark JS
- Subjects
- Fertility, Reproduction, Trees, Forests, Seeds physiology
- Abstract
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.