1. Gut microbiota dysbiosis and neurological function recovery after intracerebral hemorrhage: an analysis of clinical samples
- Author
-
Yan Wang, Hailong Bing, Conghui Jiang, Jie Wang, Xuan Wang, Zhengyuan Xia, and Qinjun Chu
- Subjects
intracerebral hemorrhage ,gut microbiota ,16S rRNA sequencing ,neurological function recovery ,Microbiology ,QR1-502 - Abstract
ABSTRACT We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. We designed two clinical cohort studies to explore the gut dysbiosis after ICH and their relationship with neurological function prognosis. First, fecal samples from patients with ICH at three time points: T1 (within 24 h of admission), T2 (3 days after surgery), and T3 (7 days after surgery), and healthy volunteers were subjected to 16S rRNA sequencing using Illumina high-throughput sequencing technology. When differential gut microbiota was identified, the correlation between clinical indicators and microbiotas was analyzed. Subsequently, the patients with ICH were categorized into GOOD and POOR groups based on their Glasgow Outcome Scale Extended (GOS-E) score, and the disparities in gut microbiota between the two groups were assessed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The composition and diversity of the gut microbiota in patients with ICH were different from those in the control group and changed dynamically with the extension of the course of cerebral hemorrhage. The abundances of Enterococcaceae, Clostridiales incertae sedis XI, and Peptoniphilaceae were significantly increased in patients with ICH, whereas Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Veillonellaceae were significantly reduced. The relative abundance of Enterococcus gradually increased with the extension of the duration of ICH after surgery, and the abundance of Bacteroides gradually decreased. The abundance of Enterococcus before surgery was found to be negatively associated with patient neurological function prognosis. The original ICH score and Lachnospiraceae status were independent risk factors for predicting the prognosis of neurological function in patients with ICH (P < 0.05). Changes in the gut microbiota diversity in patients with ICH were related to prognosis. Lachnospiraceae may have a protective effect on prognosis.IMPORTANCEAcute central nervous system injuries like hemorrhagic stroke are major global health issues. While surgical hematoma removal can alleviate brain damage, severe cases still have a high 1-month mortality rate of up to 40%. Gut microbiota significantly impacts health, and treatments like fecal microbiota transplantation (FMT) and probiotics can improve brain damage by correcting gut microbiota imbalances caused by ischemic stroke. However, few clinical studies have explored this relationship in hemorrhagic stroke. This study investigated the impact of cerebral hemorrhage on the composition of gut microbiota, and we found that Lachnospiraceae were the independent risk factors for poor prognosis in intracerebral hemorrhage (ICH). The findings offer potential insights for the application of FMT in patients with ICH, and it may improve the prognosis of patients.
- Published
- 2024
- Full Text
- View/download PDF