Colette Johnen, Stéphane Devismes, Karine Altisen, Franck Petit, Anaïs Durand, VERIMAG (VERIMAG - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), DistributEd aLgorithms and sYStems (DELYS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2, This study has been partially supported by the ANR project Estate (ANR-16-CE25-0009), LaBRI, CNRS UMR 5800, ANR-16-CE25-0009,ESTATE,Enhancing Safety and self-sTAbilization in Time-varying distributed Environments(2016), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Modélisation, Information et Systèmes - UR UPJV 4290 (MIS), Université de Picardie Jules Verne (UPJV), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), LIP6, ANR-22-CE25-0008,SKYDATA,Un nouveau paradigme de donnée: Les données autononomes et intelligentes(2022), ANR-16-CE25-0009,ESTATE,Auto-stabilisation et amélioration de la sûreté dans les environnements distribués évoluant dans le temps(2016), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
International audience; We initiate research on self-stabilization in highly dynamic identified message-passing systems where dynamics is modeled using time-varying graphs (TVGs). More precisely, we address the self-stabilizing leader election problem in three wide classes of TVGs: the class TCB(Δ) of TVGs with temporal diameter bounded by Δ, the class TCQ(Δ) of TVGs with temporal diameter quasi-bounded by Δ, and the class TCR of TVGs with recurrent connectivity only, where TCB(Δ)⊆TCQ(Δ)⊆TCR. We first study conditions under which our problem can be solved. We introduce the notion of size-ambiguity to show that the assumption on the knowledge of the number n of processes is central. Our results reveal that, despite the existence of unique process identifiers, any deterministic self-stabilizing leader election algorithm working on the class TCQ(Δ) or TCR cannot be size-ambiguous, justifying why our solutions for those classes assume the exact knowledge of n. We then present three self-stabilizing leader election algorithms for Classes TCB(Δ), TCQ(Δ), and TCR, respectively. Our algorithm for TCB(Δ) stabilizes in at most 3Δ rounds. However, we show that stabilization time cannot be bounded for the leader election problem in TCQ(Δ) and TCR. Nevertheless, we circumvent this issue by showing that our solutions are speculative in the sense that their stabilization time in TCB(Δ) (⊆TCQ(Δ)⊆TCR) is O(Δ) rounds.