1. On the $L^2$-Dolbeault cohomology of annuli
- Author
-
Debraj Chakrabarti, Mei-Chi Shaw, Christine Laurent-Thiébaut, Central Michigan University (CMU), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Notre Dame [Indiana] (UND), Programme AGIR 2014 de l'université Grenoble Alpes et Grenoble INP, Institut Fourier (IF), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
32W05 ,Pure mathematics ,Bar (music) ,Mathematics - Complex Variables ,Mathematics::Complex Variables ,General Mathematics ,010102 general mathematics ,Dolbeault cohomology ,01 natural sciences ,Sobolev space ,Range (mathematics) ,Bounded function ,0103 physical sciences ,FOS: Mathematics ,010307 mathematical physics ,Complex Variables (math.CV) ,0101 mathematics ,[MATH]Mathematics [math] ,32W05, 32C35, 32C37 ,Mathematics - Abstract
For certain annuli in $\mathbb{C}^n$, $n\geq 2$, with non-smooth holes, we show that the $\bar{\partial}$-operator from $L^2$ functions to $L^2$ $(0,1)$-forms has closed range. The holes admitted include products of pseudoconvex domains and certain intersections of smoothly bounded pseudoconvex domains. As a consequence, we obtain estimates in the Sobolev space $W^1$ for the $\bar{\partial}$-equation on the non-smooth domains which are the holes of these annuli., Small typos corrected; Final Version; To appear in Indiana University Mathematics Journal
- Published
- 2018
- Full Text
- View/download PDF