1. Mesoscopic Klein-Schwinger effect in graphene
- Author
-
A. Schmitt, P. Vallet, D. Mele, M. Rosticher, T. Taniguchi, K. Watanabe, E. Bocquillon, G. Fève, J. M. Berroir, C. Voisin, J. Cayssol, M. O. Goerbig, J. Troost, E. Baudin, B. Plaçais, Physique Mésoscopique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Carbon - IEMN (CARBON - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), National Institute for Materials Science (NIMS), Physikalisches Institut [Köln], Universität zu Köln = University of Cologne, Nano-Optique, Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Champs, Gravitation et Cordes, AcknowledgementsThe research leading to these results has received partial funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 881603 Graphene Core 3 (D.M., M.R., E. Baudin, B.P.). P.V. and J.C. were supported by the 'LIGHT S&T Graduate Program' (PIA3 Investment for the Future Program, ANR17-EURE-0027) and GPR LIGHT., ANR-17-EURE-0027,LIGHTS&T,University of Bordeaux Graduate Scholl in Light Sciences & Technologies(2017), European Project: 881603,H2020,H2020-SGA-FET-GRAPHENE-2019, GrapheneCore3(2020), Laboratoire Ondes et Matière d'Aquitaine [LOMA], Carbon - IEMN [CARBON - IEMN], Laboratoire de physique de l'ENS - ENS Paris [LPENS], National Institute for Materials Science [NIMS], and Laboratoire de Physique des Solides [LPS]
- Subjects
High Energy Physics - Theory ,Condensed Matter - Mesoscale and Nanoscale Physics ,High Energy Physics - Theory (hep-th) ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,General Physics and Astronomy ,FOS: Physical sciences ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
Strong electric field annihilation by particle-antiparticle pair creation, also known as the Schwinger effect, is a non-perturbative prediction of quantum electrodynamics. Its experimental demonstration remains elusive, as threshold electric fields are extremely strong and beyond current reach. Here, we propose a mesoscopic variant of the Schwinger effect in graphene, which hosts Dirac fermions with an approximate electron-hole symmetry. Using transport measurements, we report on universal 1d-Schwinger conductance at the pinchoff of ballistic graphene transistors. Strong pinchoff electric fields are concentrated within approximately 1 $\mu$m of the transistor's drain, and induce Schwinger electron-hole pair creation at saturation. This effect precedes a collective instability toward an ohmic Zener regime, which is rejected at twice the pinchoff voltage in long devices. These observations advance our understanding of current saturation limits in ballistic graphene and provide a direction for further quantum electrodynamic experiments in the laboratory., Comment: 39 pages, 13 figures, final version with extended discussion of the pinchoff effect in supplementary informations, abstract updated
- Published
- 2023
- Full Text
- View/download PDF