45 results on '"Challis, C.D."'
Search Results
2. Scoping studies for NBI launch geometries on DEMO
- Author
-
Jenkins, I., Challis, C.D., Keeling, D.L., and Surrey, E.
- Published
- 2016
- Full Text
- View/download PDF
3. The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium.
- Author
-
Hobirk, J., Challis, C.D., Kappatou, A., Lerche, E., Keeling, D., King, D., Aleiferis, S., Alessi, E., Angioni, C., Auriemma, F., Baruzzo, M., Belonohy, É., Bernardo, J., Boboc, A., Carvalho, I.S., Carvalho, P., Casson, F.J., Chomiczewska, A., Citrin, J., and Coffey, I.H.
- Subjects
- *
TRITIUM , *DEUTERIUM plasma , *MAGNETOHYDRODYNAMIC instabilities , *DEUTERIUM , *PLASMA currents , *ALPHA rays , *INERTIAL confinement fusion - Abstract
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Experiments in high-performance JET plasmas in preparation of second harmonic ICRF heating of tritium in ITER.
- Author
-
Mantsinen, M.J., Jacquet, P., Lerche, E., Gallart, D., Kirov, K., Mantica, P., Taylor, D., Van Eester, D., Baruzzo, M., Carvalho, I., Challis, C.D., Dal Molin, A., Delabie, E., De La Luna, E., Dumont, R., Dumortier, P., Eriksson, J., Frigione, D., Garcia, J., and Garzotti, L.
- Subjects
NEUTRAL beams ,PLASMA jets ,PLASMA beam injection heating ,CYCLOTRON resonance ,TRITIUM ,HEATING ,FAST Fourier transforms - Abstract
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium–tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of T and
3 He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3 T. Experiments have been carried out in the second major D-T campaign (DTE2) at JET, and in its prior D campaigns, to integrate these ICRF scenarios in JET high-performance plasmas and to compare their performance with the commonly used hydrogen (H) minority heating. In 50:50 D:T plasmas, up to 35% and 5% larger fusion power and diamagnetic energy content, respectively, were obtained with second harmonic heating of T as compared to H minority heating at comparable total input powers and gas injection rates. The core ion temperature was up to 30% and 20% higher with second harmonic T and3 He minority heating, respectively, with respect to H minority heating. These are favourable results for the use of these scenarios in ITER and future fusion reactors. According to modelling, adding ICRF heating to neutral beam injection using D and T beams resulted in a 10%–20% increase of on-axis bulk ion heating in the D-T plasmas due to its localisation in the plasma core. Central power deposition was confirmed with the break-in-slope and fast Fourier transform analysis of ion and electron temperature in response to ICRF modulation. The tail temperature of fast ICRF-accelerated tritons, their enhancement of the fusion yield and time behaviour as measured by an upgraded magnetic proton recoil spectrometer and neutral particle analyser were found in agreement with theoretical predictions. No losses of ICRF-accelerated ions were observed by fast ion detectors, which was as expected given the high plasma density of ne ≈ 7–8 × 1019 m−3 in the main heating phase that limited the formation of ICRF-accelerated fast ion tails.3 He was introduced in the machine by3 He gas injection, and the3 He concentration was measured by a high-resolution optical penning gauge in the sub-divertor region. The DTE2 experiments with3 He minority heating were carried with a low3 He concentration in the range of 2%–4% given the fact that the highest neutron rates with3 He minority heating in D plasmas were obtained at low3 He concentrations of ∼2%, which also coincided with the highest plasma diamagnetic energy content. In addition to3 He introduced by3 He gas injection, an intrinsic concentration of3 He of the order of 0.2%–0.4% was measured in D-T plasmas before3 He was introduced in the device, which is attributed to the radioactive decay of tritium to3 He. According to modelling, even such low intrinsic concentrations of3 He lead to significant changes in ICRF power partitioning during second harmonic heating of T due to absorption of up to 30% of the wave power by3 He. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
5. L-H transition studies in tritium and deuterium–tritium campaigns at JET with Be wall and W divertor.
- Author
-
Solano, E.R., Birkenmeier, G., Silva, C., Delabie, E., Hillesheim, J.C., Baciero, A., Balboa, I., Baruzzo, M., Boboc, A., Brix, M., Bernardo, J., Bourdelle, C., Carvalho, I.S., Carvalho, P., Challis, C.D., Chernyshova, M., Chomiczewska, A., Coelho, R., Coffey, I., and Craciunescu, T.
- Subjects
TRITIUM ,DEUTERIUM ,HYDROGEN ,ISOTOPES ,EXTRAPOLATION ,TOKAMAKS ,DENSITY - Abstract
The recent deuterium–tritium campaign in JET-ILW (DTE2) has provided a unique opportunity to study the isotope dependence of the L-H power threshold in an ITER-like wall environment (Be wall and W divertor). Here we present results from dedicated L-H transition experiments at JET-ILW, documenting the power threshold in tritium and deuterium–tritium plasmas, comparing them with the matching deuterium and hydrogen datasets. From earlier experiments in JET-ILW it is known that as plasma isotopic composition changes from deuterium, through varying deuterium/hydrogen concentrations, to pure hydrogen, the value of the line averaged density at which the threshold is minimum, n ˉ e , min , increases, leading us to expect that n ˉ e , min (T) < n ˉ e , min (DT) < n ˉ e , min (D) < n ˉ e , min (H). The new power threshold data confirms these expectations in most cases, with the corresponding ordering of the minimum power thresholds. We present a comparison of this data to power threshold scalings, used for extrapolation to future devices such as ITER and DEMO. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas.
- Author
-
Schneider, P.A., Angioni, C., Auriemma, F., Bonanomi, N., Görler, T., Henriques, R., Horvath, L., King, D., Lorenzini, R., Nyström, H., Maslov, M., Ruiz, J., Szepesi, G., Challis, C.D., Chomiczewska, A., Delabie, E., Fontdecaba, J.M., Frassinetti, L., Garcia, J., and Giroud, C.
- Subjects
PARTICLE physics ,ISOTOPES ,PLASMA currents ,HEAT flux ,PEDESTALS ,TRITIUM ,PLASMA confinement - Abstract
As part the DTE2 campaign in the JET tokamak, we conducted a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses, type-I ELMy H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from β N = 1.0 to 3.0. We investigated the pedestal and core isotope mass dependencies using this extensive data set. The pedestal shows a strong mass dependence on the density, which influences the core due to the strong coupling between both plasma regions. To better understand the causes for the observed isotope mass dependence in the pedestal, we analysed the interplay between heat and particle transport and the edge localised mode (ELM) stability. For this purpose, we developed a dynamic ELM cycle model with basic transport assumptions and a realistic neutral penetration. The temporal evolution and resulting ELM frequency introduce an additional experimental constraint that conventional quasi-stationary transport analysis cannot provide. Our model shows that a mass dependence in the ELM stability or in the transport alone cannot explain the observations. One requires a mass dependence in the ELM stability as well as one in the particle sources. The core confinement time increases with pedestal pressure for all isotope masses due to profile stiffness and electromagnetic turbulence stabilisation. Interestingly, T and D-T plasmas show an improved core confinement time compared to H and D plasmas even for matched pedestal pressures. For T, this improvement is largely due to the unique pedestal composition of higher densities and lower temperatures than H and D. With a reduced gyroBohm factor at lower temperatures, more turbulent drive in the form of steeper gradients is required to transport the same amount of heat. This picture is supported by quasilinear flux-driven modelling using TGLF -SAT2 within Astra. With the experimental boundary condition TGLF -SAT2 predicts the core profiles well for gyroBohm heat fluxes > 15 , however, overestimates the heat and particle transport closer to the turbulent threshold. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Tritium neutral beam injection on JET: calibration and plasma measurements of stored energy.
- Author
-
King, D.B., Sharma, R., Challis, C.D., Bleasdale, A., Delabie, E.G., Douai, D., Keeling, D., Lerche, E., Lennholm, M., Mailloux, J., Matthews, G., Nicassio, M., Štancar, Ž., and Wilson, T.
- Subjects
PLASMA jets ,NEUTRAL beams ,TRITIUM ,PLASMA beam injection heating ,INJECTIONS ,ALPHA rays ,TOKAMAKS ,DEUTERIUM - Abstract
Neutral beam injection (NBI) is a flexible auxiliary heating method for tokamak plasmas, capable of being efficiently coupled to the various plasma configurations required in the Tritium and mixed deuterium-tritium experimental campaign on the Joint European Torus (JET) device. High NBI power was required for high fusion yield and alpha particle studies and to provide mixed deuterium-tritium (D-T) fuelling in the plasma core, it was necessary to operate the JET NBI systems in both deuterium and tritium. Further, the pure tritium experiments performed required T NBI for high isotopic purity and reduced 14 MeV neutron yield. Accurate power calibrations are also essential to machine safety. Previously on JET there have been a number of questions raised on the NBI power calibration, in particular following the Trace Tritium Experiments (TTEs). Operator activities on the tokamak NBI system, including calibrations, were performed in 2020. Following these activities, a series of plasma experiments were devised to further corroborate the T NBI power by comparing the plasma response to the D NBI power. A series of stationary, L-mode plasmas were performed on JET with different beam combinations used in different phases of the same pulse. By comparing the plasma response for D and T NBI it was possible to corroborate the T NBI power calibration using the D NBI power calibration. The stored energy as measured by magnetic diagnostics, corrected for fast particle stored energy, show that the uncertainty in NBI power calibration in T is comparable to that in D. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. JET D-T scenario with optimized non-thermal fusion.
- Author
-
Maslov, M., Lerche, E., Auriemma, F., Belli, E., Bourdelle, C., Challis, C.D., Chomiczewska, A., Dal Molin, A., Eriksson, J., Garcia, J., Hobirk, J., Ivanova-Stanik, I., Jacquet, Ph., Kappatou, A., Kazakov, Y., Keeling, D.L., King, D.B., Kiptily, V., Kirov, K., and Kos, D.
- Subjects
THERMAL plasmas ,NEUTRAL beams ,TRITIUM ,ELECTROMAGNETIC waves ,FAST ions ,NUCLEAR fusion ,ION acoustic waves - Abstract
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in the ion cyclotron range of frequencies (ICRFs). To complement the experiments with 50/50 D/T mixtures maximizing thermonuclear reactivity, a scenario with dominant non-thermal reactivity has been developed and successfully demonstrated during the second JET deuterium-tritium campaign DTE2, as it was predicted to generate the highest fusion power in JET with a Be/W wall. It was performed in a 15/85 D/T mixture with pure D-NBI heating combined with ICRF heating at the fundamental deuterium resonance. In steady plasma conditions, a record 59 MJ of fusion energy has been achieved in a single pulse, of which 50.5 MJ were produced in a 5 s time window (P
fus = 10.1 MW) with average Q = 0.33, confirming predictive modelling in preparation of the experiment. The highest fusion power in these experiments, Pfus = 12.5 MW with average Q = 0.38, was achieved over a shorter 2 s time window, with the period of sustainment limited by high-Z impurity accumulation. This scenario provides unique data for the validation of physics-based models used to predict D-T fusion power. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
9. Development of hybrid (high beta) plasmas for D-T operation in JET
- Author
-
Challis C.D., Hobirk J., Kappatou A., Lerche E., Auriemma F., Belonohy E., Coffey I., Eriksson J., Field A.R., Fontana M., Garcia J., Ho A., Jaulmes F., Keeling D., King D., Kirov K., Lennholm M., Maggi C., Mailloux J., Maslov M., Menmuir S., Pucella G., Rachlew E., Rimini F., Sahlberg A., Sips A., Solano E., Stuart C., and Valisa M.
- Subjects
hybrid plasmas ,JET ,deuterium-tritium - Abstract
A key aim of the 2021 JET deuterium-tritium (D-T) experiments was to demonstrate steady high fusion power (10-15MW) with the ITER-like Be/W first wall. Plasmas were developed using D, repeated with T to investigate and mitigate isotope effects, and run with D-T to maximise fusion power. Compared with high current (q95~3) 'baseline' plasmas, the JET 'hybrid' scenario has reduced current (2.3MA at q95~4.5-5) and increased q0 (...1) to avoid deleterious MHD modes and access favourable confinement properties at high poloidal ... (>1). This candidate approach for ITER had never previously been tested using T or D-T fuel. In this presentation the process of 'hybrid' D-T scenario development will be explained for key phases from current ramp-up to termination, all of which are sensitive to isotope effects and impurities from the wall. For example, in the ohmic current ramp, used to pre-form the q-profile, an increase in central impurity radiation with main ion isotope mass was anticipated from previous mixed H-D experimentsa and predictive modelling, allowing mitigation actions to be rapidly implemented for T and D-T. During the early H-mode phase, prevention of impurity influxes at the edge pedestal was the primary method for core radiation control using a combination of screening and ELM flushing. This was more challenging for T & D-T plasmas compared with D, and fine adjustment of heating and gas fuelling was needed to avoid excessive edge radiation and to establish regular ELMs with H98?1. After careful adaptation for D-T, high fusion power was achieved, broadly consistent with previous modelling predictionsb given the available heating power. This led to a record fusion energy for a plasma with nD...nT of ~46 MJ.
- Published
- 2022
10. Investigation of Te measurements discrepancies between ECE and Thomson diagnostics in high-performance plasmas in JET
- Author
-
Fontana M., Giruzzi G., Orsitto F., de la Luna E., Dumont R., Figini L., Kos D., Maslov M., Schmuck S., Sozzi C., Challis C.D., Frigione D., Garcia J., Garzotti L., Hobirk J., Kappatou A., Keeling D., Lerche E., Maggi C., Mailloux J., Rimini F., and Van Eester D.
- Subjects
Te measurements ,JET ,ECE ,Thomson diagnostics ,Electron temperature ,High-performance plasmas - Published
- 2022
11. Divertor heat load in ITER-like advanced tokamak scenarios on JET
- Author
-
Arnoux, G., Andrew, P., Beurskens, M., Brezinsek, S., Challis, C.D., Vries, P. De, Fundamenski, W., Gauthier, E., Giroud, C., Huber, A., Jachmich, S., Litaudon, X., Pitts, R.A., and Rimini, F.
- Published
- 2009
- Full Text
- View/download PDF
12. Influence of the impurities in the hybrid discharges with high power in JET ILW.
- Author
-
Ivanova-Stanik, I., Challis, C.D., Chomiczewska, A., Hobirk, J., Huber, A., Kappatou, A., Lerche, E., Telesca, G., ZagĂłrski, R., and JET Contributors
- Subjects
- *
NEON , *BERYLLIUM , *HYBRID power , *PLASMA currents , *PLASMA flow , *TUNGSTEN , *TRITIUM - Abstract
The aim of this paper is to numerically study the influences of the impurities on the high power hybrid discharges in the JET ITER-like wall (ILW) configuration in the DD and deuteriumâ€"tritium (DT) scenarios. Numerical simulations with the COREDIV code of hybrid discharges with 32 MW auxiliary heating, 2.2 MA plasma current and 2.8 T toroidal magnetic field in the ILW corner configuration are presented. In the simulations five impurity species are used: intrinsic: beryllium (Be) and nickel (Ni) from the side walls, helium (He) from DT reaction, tungsten (W) from divertor and extrinsic neon (Ne) or argon (Ar) by gas puff. The extrapolation of the DD discharges to DT plasmas at the original input power of 32 MW and taking into account only the thermal component of the alpha-power, does not show any significant difference regarding the power to the target with respect to the DD case. Simulations show that sputtering due to D and T is negligible. In contrast, the simulations at auxiliary heating 39 MW show that the power to the target is possibly too high to be sustained for about 5 s by strike-point sweeping alone without any control by Ne seeding. The tungsten is produced mainly by Ni, Be and seeded impurities. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. Overview of the JET neutral beam enhancement project
- Author
-
Ćirić, D., Brown, D.P.D., Challis, C.D., Chuilon, B., Cox, S.J., Crowley, B., Day, I.E., Edwards, D.C., Evison, G., Hackett, L.J., Hotchin, S., Hudson, Z., Jenkins, I., Jones, T.T.C., King, R., Kovari, M., Martin, D., Milnes, J., Parkin, A., Puma, A. Li, Shannon, M., Stevens, A., Stork, D., Surrey, E., Waldon, C., Warren, R., Wilson, D., Young, D., and Young, I.D.
- Published
- 2007
- Full Text
- View/download PDF
14. Measurement of the depletion of neutraliser target due to gas heating in the JET neutral beam injection system
- Author
-
Surrey, E., Challis, C.D., Ciric, D., Cox, S.J., Crowley, B., Jenkins, I., Jones, T.T.C., and Keeling, D.
- Published
- 2005
- Full Text
- View/download PDF
15. Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall Recent citations
- Author
-
Joffrin, E., Abduallev, S., Abhangi, M., Abreu, P., Afanasev, V., Afzal, M., Aggarwal, K.M., Ahlgren, T., Aho-Mantila, L., Aiba, N., Airila, M., Alarcon, T., Albanese, R., Alegre, D., Aleiferis, S., Alessi, E., Aleynikov, P., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amosov, V., Andersson Sundén, E., Andrews, R., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arshad, S., Artaud, J., Arter, W., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Asztalos, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M., Ayres, C., Baciero, A., Baião, D., Balboa, I., Balden, M., Balshaw, N., Bandaru, V.K., Banks, J., Baranov, Y.F., Barcellona, C., Barnard, T., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baumane, L., Bauvir, B., Baylor, L., Beaumont, P.S., Beckers, M., Beckett, B., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Belonohy, E., Benayas, J., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besiliu, C., Betar, H., Beurskens, M., Bielecki, J., Biewer, T., Bilato, R., Biletskyi, O., Bílková, P., Binda, F., Birkenmeier, G., Bizarro, J.P.S., Björkas, C., Blackburn, J., Blackman, T.R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bogar, O., Bohm, P., Bohm, T., Bolshakova, I., Bolzonella, T., Bonanomi, N., Boncagni, L., Bonfiglio, D., Bonnin, X., Boom, J., Borba, D., Borodin, D., borodkina, I., Boulbe, C., Bourdelle, C., Bowden, M., Bowman, C., Boyce, T., Boyer, H., Bradnam, S.C., Braic, V., Bravanec, R., Breizman, B., Brennan, D., Breton, S., Brett, A., Brezinsek, S., Bright, M., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, B., Brunetti, D., Bruno, E., Buch, J., Buchanan, J., Buckingham, R., Buckley, M., Bucolo, M., Budny, R., Bufferand, H., Buller, S., Bunting, P., Buratti, P., Burckhart, A., Burroughes, G., Buscarino, A., Busse, A., Butcher, D., Butler, B., Bykov, I., Cahyna, P., Calabrò, G., Calacci, L., Callaghan, D., Callaghan, J., Calvo, I., Camenen, Y., Camp, P., Campling, D.C., Cannas, B., Capat, A., Carcangiu, S., Card, P., Cardinali, A., Carman, P., Carnevale, D., Carr, M., Carralero, D., Carraro, L., Carvalho, B.B., Carvalho, I., Carvalho, P., Carvalho, D.D., Casson, F.J., Castaldo, C., Catarino, N., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavedon, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Challis, C.D., Chandra, D., Chang, C.S., Chankin, A., Chapman, I.T., Chapman, B., Chapman, S.C., Chernyshova, M., Chiariello, A., Chitarin, G., Chmielewski, P., Chone, L., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, M., Clark, E., Clarkson, R., Clay, R., Clements, C., Coad, J.P., Coates, P., Cobalt, A., Coccorese, V., Cocilovo, V., Coelho, R., Coenen, J.W., Coffey, I., Colas, L., Colling, B., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, S.R., Corradino, C., Corre, Y., Corrigan, G., Coster, D., Craciunescu, T., Cramp, S., Crapper, C., Crisanti, F., CROCI, G., Croft, D., Crombé, K., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curson, P., Curuia, M., Czarnecka, A., Czarski, T., Cziegler, I., Dabirikhah, H., Dal Molin, A., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., David, P., Davies, A., Davis, W., Dawson, K., Day, I., Day, C., De Bock, M., de Castro, A., De Dominici, G., De La Cal, E., De La Luna, E., De Masi, G., De Temmerman, G., De Tommasi, G., De Vries, P., Deane, J., Dejarnac, R., Del Sarto, D., Delabie, E., Demerdzhiev, V., Dempsey, A., Den Harder, N., Dendy, R.O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dickinson, D., Dinca, P., Dittmar, T., Dobrashian, J., Doerk, H., Doerner, R.P., Domptail, F., Donné, T., Dorling, S.E., Douai, D., Dowson, S., Drenik, A., Dreval, M., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B.P., Dux, R., Dylst, K., Edappala, P.V., Edwards, A.M., Edwards, J.S., Eich, Th., Eidietis, N., Eksaeva, A., Ellis, R., Ellwood, G., Elsmore, C., Emery, S., Enachescu, M., Ericsson, G., Eriksson, J., Eriksson, F., Eriksson, L.G., Ertmer, S., Esquembri, S., Esquisabel, A.L., Esser, H.G., Ewart, G., Fable, E., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Farahani, A., Fasoli, A., Faugeras, B., Fazinić, S., Felici, F., Felton, R.C., Feng, S., Fernades, A., Fernandes, H., Ferreira, J., Ferreira, D.R., Ferro, G., Fessey, J.A., Ficker, O., Field, A., Fietz, S., Figini, L., Figueiredo, A., Figueiredo, J., Fil, N., Finburg, P., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Flinders, K., Foley, S., Fonnesu, N., Fontdecaba, J.M., Formisano, A., Forsythe, L., Fortuna, L., Fransson, E., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Fridström, R., Frigione, D., Fuchs, V., Fusco, V., Futatani, S., Gál, K., Galassi, D., Gałązka, K., Galeani, S., Gallart, D., Galvão, R., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardener, M., Garzotti, L., Gaspar, J., Gaudio, P., Gear, D., Gebhart, T., Gee, S., Geiger, B., Gelfusa, M., George, R., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Ghezzi, F., Giacalone, J.C., Giacomelli, L., Giacometti, G., Gibson, K., Giegerich, T., Gil, L., Gilbert, M.R., Gin, D., Giovannozzi, E., Giroud, C., Glöggler, S., Goff, J., Gohil, P., Goloborod’ko, V., Goloborodko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodyear, A., Gorini, G., Görler, T., Goulding, R., Goussarov, A., Graham, B., Graves, J.P., Greuner, H., Grierson, B., Griffiths, J., Griph, S., Grist, D., Groth, M., Grove, R., Gruca, M., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gulati, S., Gurl, C., Gutierrez-Milla, A., Utoh, H.H., Hackett, L., Hacquin, S., Hager, R., Hakola, A., Halitovs, M., Hall, S., Hallworth-Cook, S., Ham, C., Hamed, M., Hamilton, N., Hamlyn-Harris, C., Hammond, K., Hancu, G., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D.R., Haupt, T., Hawes, J., Hawkes, N.C., Hawkins, J., Hawkins, P., Hazel, S., Heesterman, P., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O., Hender, T.C., Henderson, S.S., Henderson, M., Henriques, R., Hepple, D., Herfindal, J., Hermon, G., Hidalgo, C., Higginson, W., Highcock, E.G., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Ho, A., Hobirk, J., Hogben, C.H.A., Hogeweij, G.M.D., Hollingsworth, A., Hollis, S., Hölzl, M., Honore, J.-J., Hook, M., Hopley, D., Horáček, J., Hornung, G., Horton, A., Horton, L.D., Horvath, L., Hotchin, S.P., Howell, R., Hubbard, A., Huber, A., Huber, V., Huddleston, T.M., Hughes, M., Hughes, J., Huijsmans, G.T.A., Huynh, P., Hynes, A., Igaune, I., Iglesias, D., Imazawa, N., Imríšek, M., Incelli, M., Innocente, P., Ivanova-Stanik, I., Ivings, E., Jachmich, S., Jackson, A., Jackson, T., Jacquet, P., Jansons, J., Jaulmes, F., Jednoróg, S., Jenkins, I., Jepu, I., Johnson, T., Johnson, R., Johnston, J., Joita, L., Joly, J., Jonasson, E., Jones, T., Jones, C., Jones, L., Jones, G., Jones, N., Juvonen, M., Hoshino, K.K., Kallenbach, A., Kalsey, M., Kaltiaisenaho, T., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D.L., Keenan, F.P., Kempenaars, M., Kent, O., Kent, J., Keogh, K., Khilkevich, E., Kim, H.-T., King, R., King, D., Kinna, D.J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klas, M., Klepper, C., Klix, A., Knight, M., Knight, P., Knipe, S., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Koechl, F., Kogut, D., Koivuranta, S., Kolesnichenko, Y., Kollo, Z., Kominis, Y., Köppen, M., Korolczuk, S., Kos, B., Koslowski, H.R., Kotschenreuther, M., Koubiti, M., Kovaldins, R., Kovanda, O., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwon, O.J., Laguardia, L., Lahtinen, A., Laing, A., Lalousis, P., Lam, N., Lamb, C., Lambertz, H.T., Lang, P.T., Lanthaler, S., Lascas Neto, E., Łaszyńska, E., Lawless, R., Lawson, K.D., Lazaros, A., Lazzaro, E., Leach, R., Learoyd, G., Leerink, S., Lefebvre, X., Leggate, H.J., Lehmann, J., Lehnen, M., Leichauer, P., Leichtle, D., Leipold, F., Lengar, I., Lennholm, M., Lepiavko, B., Leppänen, J., Lerche, E., Lescinskis, A., Lescinskis, B., Lesnoj, S., Leyland, M., Leysen, W., Li, Y., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Litaudon, X., Liu, G., Lloyd, B., Lo Schiavo, V.P., Loarer, T., Loarte, A., Lomanowski, B., Lomas, P.J., Lönnroth, J., López, J.M., Lorenzini, R., Losada, U., Loughlin, M., Lowry, C., Luce, T., Lucock, R., Lukin, A., Luna, C., Lungaroni, M., Lungu, C.P., Lungu, M., Lunniss, A., Lunt, T., Lupelli, I., Lutsenko, V., Lyssoivan, A., Macheta, P., Macusova, E., Magesh, B., Maggi, C., Maggiora, R., Mahesan, S., Maier, H., Mailloux, J., Maingi, R., Makwana, R., Malaquias, A., Malinowski, K., Malizia, A., Manas, P., Manduchi, G., Manso, M.E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marconato, N., Mariani, A., Marin, M., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marsh, J., Martin, A., Martin De Aguilera, A., Martín-Solís, J.R., Martone, R., Martynova, Y., Maruyama, S., Maslov, M., Matejcik, S., Mattei, M., Matthews, G.F., Matveev, D., Matveeva, E., Mauriya, A., Maviglia, F., May-Smith, T., Mayer, M., Mayoral, M.L., Mazon, D., Mazzotta, C., Mcadams, R., McCarthy, P.J., McClements, K.G., McCormack, O., McCullen, P.A., Mcdonald, D., McHardy, M., McKean, R., McKehon, J., McNamee, L., Meadowcroft, C., Meakins, A., Medley, S., Meigh, S., Meigs, A.G., Meisl, G., Meiter, S., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merle, A., Merriman, P., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Michling, R., Milanesio, D., Militello, F., Militello-Asp, E., Milocco, A., Miloshevsky, G., Mink, F., Minucci, S., Miron, I., Mistry, S., Miyoshi, Y., Mlynář, J., Moiseenko, V., Monaghan, P., Monakhov, I., Moon, S., Mooney, R., Moradi, S., Morales, J., Moran, J., Mordijck, S., Moreira, L., Moro, F., Morris, J., Moser, L., Mosher, S., Moulton, D., Mrowetz, T., Muir, A., Muraglia, M., Murari, A., Muraro, A., Murphy, S., Muscat, P., Muthusonai, N., Myers, C., Asakura, N.N., N’Konga, B., Nabais, F., Naish, R., Naish, J., Nakano, T., Napoli, F., Nardon, E., Naulin, V., Nave, M.F.F., Nedzelskiy, I., Nemtsev, G., Nesenevich, V., Nespoli, F., Neto, A., Neu, R., Neverov, V.S., Newman, M., Ng, S., Nicassio, M., Nielsen, A.H., Nina, D., Nishijima, D., Noble, C., Nobs, C.R., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Normanton, R., Noterdaeme, J.M., Nowak, S., Nunes, I., O’Gorman, T., O’Mullane, M., Oberkofler, M., Oberparleiter, M., Odupitan, T., Ogawa, M.T., Okabayashi, M., Oliver, H., Olney, R., Omoregie, L., Ongena, J., Orsitto, F., Orszagh, J., Osborne, T., Otin, R., Owen, A., Owen, T., Paccagnella, R., Packer, L.W., Pajuste, E., Pamela, S., Panja, S., Papp, P., Papp, G., Parail, V., Pardanaud, C., Parra Diaz, F., Parsloe, A., Parsons, N., Parsons, M., Pasqualotto, R., Passeri, M., Patel, A., Pathak, S., Patten, H., Pau, A., Pautasso, G., Pavlichenko, R., Pavone, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pehkonen, S.-P., Peluso, E., Penot, C., Penzo, J., Pepperell, K., Pereira, R., Perelli Cippo, E., Perez von Thun, C., Pericoli, V., Peruzzo, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petržilka, V., Philipps, V., Pigatto, L., Pillon, M., Pinches, S., Pintsuk, G., Piovesan, P., Pires de Sa, W., Pires dos Reis, A., Piron, L., Piron, C., Pironti, A., Pisano, F., Pitts, R., Plyusnin, V., Poli, F.M., Pomaro, N., Pompilian, O.G., Pool, P., Popovichev, S., Poradziński, M., Porfiri, M.T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Poulipoulis, G., Powell, T., Prajapati, V., Prakash, R., Predebon, I., Prestopino, G., Price, D., Price, M., Price, R., Primetzhofer, D., Prior, P., Pucella, G., Puglia, P., Puiatti, M.E., Purahoo, K., Pusztai, I., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M., Raj, P., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C.J., Rasmussen, D., Rasmussen, J.J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rebai, M., Reed, A., Réfy, D., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S.D.A., Reynolds, S., Ricci, D., Richiusa, M., Rigamonti, D., Rimini, F.G., Risner, J., Riva, M., Rivero-Rodriguez, J., Roach, C., Robins, R., Robinson, S., Robson, D., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, Marco, Romanelli, F., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Sáez, X., Safi, E., Sahlberg, A., Saibene, G., Saleem, M., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samm, U., Sandiford, D., Santa, P., Santala, M.I.K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schluck, F., Schlummer, T., Schmid, K., Schmuck, S., Schöpf, K., Schweinzer, J., SCHWÖRER, D., Scott, S.D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S.E., Shaw, A., Sheikh, H., Shepherd, A., Shevelev, A., Shiraki, D., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, J., Silva, A., Silva, C., Silvagni, D., Simmons, P., Simpson, J., Sinha, A., Sipilä, S.K., Sips, A.C.C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Skvara, V., Slade, B., Smith, R., Smith, P., Smith, S.F., Snoj, L., Soare, S., Solano, E.R., Somers, A., Sommariva, C., Sonato, P., Sos, M., Sousa, J., Sozzi, C., Spagnolo, S., Sparapani, P., Spelzini, T., Spineanu, F., Sprada, D., Sridhar, S., Stables, G., Stallard, J., Stamatelatos, I., Stamp, M.F., Stan-Sion, C., Stancar, Z., Staniec, P., Stankūnas, G., Stano, M., Stavrou, C., Stefanikova, E., Stepanov, I., Stephen, A.V., Stephen, M., Stephens, J., Stevens, B., Stober, J., Stokes, C., Strachan, J., Strand, P., Strauss, H.R., Ström, P., Studholme, W., Subba, F., Suchkov, E., Summers, H.P., Sun, H., Sutton, N., Svensson, J., Sytnykov, D., Szabolics, T., Szepesi, G., Suzuki, T.T., Tabarés, F., Tadić, T., Tal, B., Tál, B., Tala, T., Taliercio, C., Tallargio, A., Tanaka, K., Tang, W., Tardocchi, M., Tatali, R., Taylor, D., Tegnered, D., Telesca, G., Teplova, N., Teplukhina, A., Terranova, D., Terry, C., Testa, D., Tholerus, E., Thomas, J., Thompson, V.K., Thornton, A., Tierens, W., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Trimble, P., Tripský, M., Tsalas, M., Tsavalas, P., Tskhakaya, D., Tskhakaya Jun, D., Turner, I., Turner, M.M., Turnyanskiy, M., Tvalashvili, G., Tyshchenko, M., Uccello, A., Uljanovs, J., Urano, H., Urban, A., Urbanczyk, G., Uytdenhouwen, I., Vadgama, A., Valcarcel, D., Vale, R., Valentinuzzi, M., Valerii, K., Valisa, M., Vallejos Olivares, P., Valovic, M., Van Eester, D., Van Renterghem, W., van Rooij, G.J., Varje, J., Vartanian, S., Vasava, K., Vasilopoulou, T., Vecsei, M., Vega, J., Ventre, S., Verdoolaege, G., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincent, M., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Voltolina, D., von Toussaint, U., Vondráček, P., Vukšić, M., Wakeling, B., Waldon, C., Walkden, N., Walker, R., Walker, M., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R., Waterhouse, J., Watts, C., Wauters, T., Webb, M., Weckmann, A., Weiland, J., Weiland, M., Weisen, H., Weiszflog, M., Welch, P., West, A., Wheatley, M., Wheeler, S., Whitehead, A.M., Whittaker, D., Widdowson, A.M., Wiesen, S., Wilkie, G., Williams, J., Willoughby, D., Wilson, J., Wilson, I., Wilson, H.R., Wischmeier, M., Withycombe, A., Witts, D., Wolfrum, E., Wood, R., Woodley, R., Woodley, C., Wray, S., Wright, J.C., Wright, P., Wukitch, S., Wynn, A., Xiang, L., Xu, T., Xue, Y., Yadikin, D., Yakovenko, Y., Yanling, W., Yavorskij, V., Young, I., Young, R., Young, D., Zacks, J., Zagorski, R., Zaitsev, F.S., Zakharov, L., Zanino, R., Zarins, A., Zarins, R., Zarzoso Fernandez, D., Zastrow, K.D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zocco, A., Zoita, V., Zoletnik, S., Zwingmann, W., Zychor, I., CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), VTT Technical Research Centre of Finland (VTT), Naka Fusion Institute, National Institutes for Quantum and Radiological Science and Technology (QST), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), STMicroelectronics, EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Assoc. Euratom-ENEA-CREATE, Università degli studi di Napoli Federico II, Universita degli studi di Napoli 'Parthenope' [Napoli], Queen's University [Kingston], Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania [Catania], National Institute for Fusion Science (NIFS), Massachusetts Institute of Technology (MIT), Culham Centre for Fusion Energy (CCFE), North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC), Conseil National de Recherches Canada (CNRC), ITER Organization, Consorzio RFX, Associazione Euratom/ENEA sulla Fusione (RFX), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), EUROfus Program Management Unit PMU, European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), ITER [St. Paul-lez-Durance], ITER, H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk (PAN), Maladies chroniques, santé perçue, et processus d'adaptation (APEMAC), Université de Lorraine (UL), Cités, Territoires, Environnement et Sociétés (CITERES), Université de Tours-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), Bar-Ilan University [Israël], The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (ASCR), Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Consiglio Nazionale delle Ricerche [Roma] (CNR), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Informatica Sistemi e Produzione, University of Rome Tor Vergata (DISP), Università degli Studi di Roma Tor Vergata [Roma], Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Institute for Plasma Research, Bhat, Gandhinagar India, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Institut für Physik, University of Basel (Unibas), Institute of Plasma Physics, Association Euratom/IPP.CR (IPP PRAGUE), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dipartimento di Energia [Milano] (DENG), Politecnico di Milano [Milan] (POLIMI), NIPNE -Bucharest-Magurele (NIPNE), NIPNE, Laboratory for Plasma Physics (LPP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Centre de Recherches en Physique des Plasmas (CRPP), Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Southern University of Science and Technology [Shenzhen] (SUSTech), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), University of Évora [Portugal], Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 (LASIR), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Department of Physics [Stockholm], Stockholm University, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Sichuan University, Istituto Nazionale di Geofisica e di Oceanografia Sperimentale (OGS), Operations Department (ESAC), European Space Astronomy Centre (ESAC), European Space Agency (ESA)-European Space Agency (ESA), A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences [Moscow] (RAS), EUROfusion, School of Biological, Earth and Environmental Sciences [Sydney] (BEES), University of New South Wales [Sydney] (UNSW), Association EURATOM-CEA (CEA/DSM/DRFC), Universität Ulm - Ulm University [Ulm, Allemagne], Department of Pharmaceutical Biology, Friedrich Schiller University Jena [Jena, Germany], Advanced Science Research Center, Japan Atomic Energy Agency, Consultative Group on International Agricultural Research [CGIAR], University of Helsinki, Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, Sweden, EURATOM CIEMAT (CIEMAT), European Centre for Medium-Range Weather Forecasts (ECMWF), Ghent University [Belgium] (UGENT), Centre for Glaciology, Institute of Geography and Earth Sciences, Ngee Ann Polytechnic, School of Engineering, Mechanical Engineering Division, Laboratory for Plasma Physics, Euratom-Belgian State Association-Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Department of Materials, University of Oxford [Oxford], Department of Fusion Plasma Physics [Stockholm] (KTH), Royal Institute of Technology [Stockholm] (KTH ), Meteorological Research Flight (MRF), United Kingdom Met Office [Exeter]-Defense Research Agency (DRA), University of Southern Queensland (USQ), Forschungszentrum Julich - Institut Energie & Klimaforsch, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Karlsruhe Institute of Technology (KIT), Institut fur Energie und Klimaforschung - Plasmaphysik (IEK-4), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Gulliver, ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), National Center for Atmospheric Research [Boulder] (NCAR), Aalto University, Institut Européen des membranes (IEM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS), System Design Department, IHP Microelctronics, LPSM UMR 8001 - Laboratoire de Probabilités, Statistique et Modélisation, York Plasma Institute (YPI), University of York [York, UK], Centre for Plasma Physics, Association EURATOM, Guizhou Institute of Technology, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Aalto University School of Science and Technology, PELIN Laboratory, 27A, Gzhatskaya, Saint-Petersburg, Space Research Institute of the Russian Academy of Sciences (IKI), Faculty of Mathematics and Physics [Praha/Prague], Charles University [Prague], Euratom/UKEAE Fusion Association (JET), UKEA, INAF-IASF/Rome, Istituto Nazionale di Astrofisica (INAF), Ricerca Formazione Innovazione (Consorzio RFX), Consiglio Nazionale delle Ricerche (CNR), Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS), Service des Réacteurs et de Mathématiques Appliquées (SERMA), Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, UMR CNRS 8179, Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies, Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Department of Electronics, Politecnico di Torino [Torino] (Polito), Max Planck Institute for Plasma physics (IPP-MPG), Max-Planck-Gesellschaft, Nagoya University, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-École polytechnique (X)-Sorbonne Universités-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Photonics and photonic materials group, Departement of Physics, University of bath, University of Bath [Bath], Consorzio RFX Associazione EURATOM ENEA per la Fusione, EUROfusion Consortium, JET, Center for Energy Research, Department of Mechanical and Aerospace Engineering (CER), University of California [San Diego] (UC San Diego), University of California-University of California, Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Department of Physics and Helsinki Institute of Physics, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Aix Marseille Université (AMU), Department of General Surgery, University Hospital Aintree, Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Uppsala University, Section of Theoretical Physics, Association EURATOM-Hellenic Republic-University of Ioannina, University of Colorado Anschutz [Aurora], Indian Institute of Technology Madras (IIT Madras), Novel Materials & Structural Chemistry Division (NMSCD), Bhabha Atomic Research Center (BARC), Government of India, Department of Atomic Energy-Government of India, Department of Atomic Energy, Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Dipartimento di Fisica G. Occhialini, Universit`a Milano-Bicocca and INFN, Centre oscar lambert, service d'hématologie chu, INFM and L-NESS, Dipartimento di Fisica del Politecnico di Milano, National Institute for Nuclear Physics (INFN), Centre de résonance magnétique biologique et médicale (CRMBM), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Dipartimento di Scienze della Terra [Trieste], Università degli studi di Trieste, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione [Napoli] (DIETI), Università degli studi della Tuscia [Viterbo], Soltan Institute for Nuclear Studies, Laboratoire d'Etude des Matériaux en Milieux Agressifs (LEMMA), Université de La Rochelle (ULR), ISL, Blackett Laboratory, Imperial College London, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Jozef Stefan Institute [Ljubljana] (IJS), National Institute for Research and Development for Cryogenic and Isotopic Technologies [Valcea] (ICSI), Hydrosystèmes et bioprocédés (UR HBAN), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Service de réanimation médicale, Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Diderot - Paris 7 (UPD7)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR48, INSB-INSB-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR48, INSB-INSB-Centre National de la Recherche Scientifique (CNRS), EURATOM-VR Fusion Assoc., Chalmers University of Technology [Göteborg], Faculty of Mathematics, Physics and Informatics [Bratislava], Comenius University [Bratislava], Department of Physics and Applied Physics (DPAP), University of Strathclyde, Institute of Oceanology [China], Technical Research Centre of Finland, JRC Institute for Transuranium Elements [Karlsruhe] (ITU ), European Commission - Joint Research Centre [Karlsruhe] (JRC), National Center for Scientific Research 'Demokritos' (NCSR), Laboratorio Nacional de Fusión [Madrid], Asociación Euratom-CIEMAT, Michigan State University [East Lansing], Michigan State University System, Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Università degli studi di Cassino e del Lazio Meridionale (UNICAS), Health and Safety Laboratory, Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH)-NASA, Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université de Lille-Centre National de la Recherche Scientifique (CNRS), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Istituto Nazionale di Fisica Nucleare (INFN), Université Paris Diderot - Paris 7 (UPD7)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
16. Predictive Multichannel Flux-Driven Modelling to Optimize ICRH Tungsten Control in JET
- Author
-
Casson F.J., H. Patten, Bourdelle C., Breton S., Citrin J., Köchl F., Angioni C., Baranov Y., Bilato R., Belli E.A., Challis C.D., Corrigan G., Czarnecka A., Ficker O., Garzotti L., Goniche M., Graves J.P., Johnson T., Kirov K., Knight P.J., Lerche E.A., Mantsinen M.J., Mlyná J., Sertoli M., Valisa M., and the JET Contributors
- Subjects
Physics::Plasma Physics ,JET ,ICRH Tungsten Control - Abstract
The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multichannel integrated modelling over multiple confinement times using first-principle based models. Eight transport channels (Ti, Te, nD, nBe, nNi, nW, Vtor, j) are modelled predictively with self-consistent predictions for sources, radiation, and magnetic equilibrium, yielding a predictive system with multiple nonlinearities which can reproduce observed radiative temperature collapse after several confinement times. The mechanism responsible for W accumulation is inward neoclassical convection driven by the main ion density gradients and enhanced by poloidal asymmetries due to centrifugal acceleration. The slow timescale of bulk density evolution sets the timescale for central W accumulation. Prediction of this phenomenon requires a turbulent transport model capable of accurately predicting particle and momentum transport (QuaLiKiz) and a neoclassical transport model including the effects of poloidal asymmetries (NEO) coupled to an integrated plasma simulator (JINTRAC). The modelling capability is applied to optimize the available actuators to prevent W accumulation, and to extrapolate in power and pulse length. Central NBI heating is preferred for high performance, but comes at the price of central deposition of particles and torque which pose the risk of W accumulation. Several benefits of ICRH to mitigate W accumulation are examined: The primary mechanism for ICRH to control W in JET are via its impact on the bulk profiles and turbulent diffusion, which are insensitive to details of the ICRH scheme. High power density near the axis is found to be best to maximize the beneficial effects of ICRH against W, but changing the minority species or its concentration does not significantly change the W behaviour. With attention to the location of the ICRH resonance and MHD stability, high performance hybrid scenario discharges of 5 s at maximum power should be possible in the coming campaign, and a controlled and steady fusion performance in the subsequent JET DT campaign. This work demonstrates the integration of multiple first-principle models into a powerful multichannel predictive tool for the core plasma, able to guide JET scenario development to its objectives of higher performance and longer pulses.
- Published
- 2018
17. Analysis of the fusion performance, beam–target neutrons and synergistic effects of JET's high-performance pulses.
- Author
-
Kirov, K.K., Belonohy, E., Challis, C.D., Eriksson, J., Frigione, D., Garzotti, L., Giacomelli, L., Hobirk, J., Kappatou, A., Keeling, D., King, D., Lerche, E., Lomas, P.J., Nocente, M., Reux, C., Rimini, F.G., Sips, A.C.C., Van Eester, D., and Contributors, JET
- Subjects
NEUTRONS ,PLASMA beam injection heating ,NUCLEAR fusion ,FAST ions ,ELECTRON impact ionization ,NEUTRAL beams ,ION temperature - Abstract
Achieving high neutron yields in today's fusion research relies on high-power auxiliary heating in order to attain required core temperatures. This is usually achieved by means of high neutral beam (NB) and radio frequency (RF) power. Application of NB power is accompanied by production of fast beam ions and associated beam–target (BT) reactions. In standard JET operational conditions, deuterium (D) NBs are injected into D plasmas. The injected beams comprise D atoms at full, one-half and one-third injected energy. Typically, the full energy of the injected D beams is between 90 and 120 keV, providing 1.4–2.0 MW of heating, which is about half of the injected power. Half-energy D beams carry about one-third of the injected power and the rest of the power is carried by the third energy fraction of D beams. Under these conditions, thermal fusion reactions, i.e. those between plasma ions, and BT reactions are of the same order of magnitude. This study addresses important issues regarding the impact of density, central electron and ion temperatures and their ratio, T
i (0)/Te (0), on fusion performance, measured by the total neutron yield and BT neutron counts. NB/RF synergistic effects are discussed as well. It is demonstrated that thermal fusion gain increases linearly with normalised plasma pressure, βN , and confinement, Bt τ. The BT neutrons are, however, more difficult to predict and this task in general requires numerical treatment. In this study, BT neutrons in JET's best-performing baseline and hybrid pulses are analysed and the underlying dependencies discussed. Central fast ion densities are found to decrease with increased density and density peaking. This is attributed to poorer beam penetration at high density. The BT reactions however are unchanged and can even increase if operating at higher core temperatures. An increase in the central ion temperature and Ti (0)/Te (0) ratio leads to higher total and BT reaction rates whilst simultaneously the ratio of the BT to total neutron decreases significantly. NB/RF synergistic effects are found to have a negligible impact on total neutron rate. This can be explained by the reduced beam penetration in high-density conditions leading to lower central fast ion density. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
18. Statistical assessment of ELM triggering by pellets on JET.
- Author
-
Lennholm, M., McKean, R., Mooney, R., Tvalashvili, G., Artaserse, G., Baruzzo, M., Belonohy, E., Calabro, G., Carvalho, I.S., Challis, C.D., de la Luna, E., Frigione, D., Garzotti, L., Henriques, R.B., Hobirk, J., Jaquet, P., Kappatou, A., Keeling, D., King, D., and Lang, P.T.
- Subjects
HYDROGEN isotopes - Abstract
This article investigates the triggering of ELMs on JET by injection of frozen pellets of isotopes of Hydrogen. A method is established to determine the probability that a specific pellet triggers a particular ELM. This method allows clear distinction between pellet-ELM pairs that are very likely to represent triggering events and pairs that are very unlikely to represent such an event. Based on this, the pellet parameters that are most likely to affect the ability of pellets to trigger ELMs have been investigated. It has been found that the injection location is very important, with injection from the vertical high field side showing a much higher triggering efficiency than low field side (LFS) injection. The dependence on parameters such as pellet speed and size and the time since the last ELM is also seen to be much stronger for LFS injection. Finally, the paper illustrates how improvements to the pellet injection system by streamlining the pellet flight lines and slightly increasing the pellet size has resulted in a significantly improved ability to deliver pellets to the plasma and trigger ELMs. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
19. Impact of divertor geometry on H-mode confinement in the JET metallic wall
- Author
-
Joffrin, E., Tamain, P., Belonohy, E., Bufferand, H., Buratti, P., Challis, C.D., Delabie, E., Drewelow, P., Dodt, D., Tsalas, M., Frassinetti, L., Garcia, J., Giroud, C., Groth, M., Hobirk, J., Jarvinen, A.E., Kim, H.T., Koechl, F., Kruezi, U., Lipschultz, B., Lomas, P.J., de la Luna, E., Loarer, T., Maget, P., Maggi, C., Matthews, G., Maviglia, F., Meigs, A., Nunes, I., Pucella, G., Rimini, F., Saarelma, S., Solano, E., Sips, A.C. C., Voitsekhovitch, I., Weisen, H., Contributors, JET, JET Contributors, Pucella, G., and Buratti, P.
- Subjects
Nuclear and High Energy Physics ,Materials science ,Divertor ,divertor ,neutrals ,confinement ,Jet (particle physics) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Ion ,Momentum ,Core (optical fiber) ,Pedestal ,Physics::Plasma Physics ,0103 physical sciences ,Electric potential ,Atomic physics ,Total pressure ,010306 general physics ,neutral - Abstract
Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement. © 2017 CEA.
- Published
- 2017
20. Mixed hydrogen-deuterium plasmas on JET ILW.
- Author
-
King, D.B., Viezzer, E., Balboa, I., Baruzzo, M., Belonohy, E., Buchanan, J., Carvalho, I.S., Cave-Ayland, K., Challis, C.D., Coffey, I., Delabie, E.G., Garzotti, L., Hall, S., Hillesheim, J.C., Horvath, L., Joffrin, E., Keeling, D., Kirov, K., Maggi, C.F., and Maslov, M.
- Subjects
PLASMA jets ,GAS as fuel ,HEAT ,PLASMA currents ,THERMAL plasmas ,DEUTERIUM ,PLASMA confinement - Abstract
A study of mixed hydrogen-deuterium H-mode plasmas has been carried out in JET-ILW to strengthen the physics basis for extrapolations to JET D-T operation and to support the development of strategies for isotope ratio control in future experiments. Variations of input power, gas fuelling and isotopic mixture were performed in H-mode plasmas of the same magnetic field, plasma current and divertor configuration. The analysis of the energy confinement as a function of isotope mixture reveals that the biggest change is seen in plasmas with small fractions of H or D, in particular when including pure isotope plasmas. To interpret the results correctly, the dependence of the power threshold for access to type-I ELMing H-modes on the isotope mixture must be taken into account. For plasmas with effective mass between 1.2 and 1.8 the plasma thermal stored energy () scales as , which is weaker than that in the ITER physics basis, IPB98 scaling. At fixed stored energy, deuterium-rich plasmas feature higher density pedestals, while the temperature at the pedestal top is lower, showing that at the same gas fuelling rate and power level, the pedestal pressure remains constant with an exchange of density and temperature as the isotope ratio is varied. Isotope control was successfully tested in JET-ILW by changing the isotope ratio throughout a discharge, switching from D to H gas puffing. Several energy confinement times (300 ms) are needed to fully change the isotope ratio during a discharge. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
21. Effect of fuel isotope mass on q-profile formation in JET hybrid plasmas.
- Author
-
Challis, C.D., Brezinsek, S., Coffey, I.H., Fontana, M., Hawkes, N.C., Keeling, D.L., King, D.B., Pucella, G., and Viezzer, E.
- Subjects
- *
PLASMA jets , *PLASMA boundary layers , *REAL-time control , *ISOTOPES , *ELECTRON temperature , *MAGNETOHYDRODYNAMIC instabilities , *DEUTERIUM - Abstract
The initial current ramp phase of JET hybrid plasmas is used to optimise the target q-profile for main heating to allow access to high β and avoid MHD instabilities. Mixed protium-deuterium experiments, carried out at JET since the installation of the beryllium-tungsten wall, have shown that the q-profile evolution during this Ohmic phase varies systematically with average main ion isotope mass, indicating the need for re-optimisation for future T and mixed D-T experiments. Current diffusion modelling shows that the key factor was a reduction in electron temperature profile peaking as the hydrogenic isotope mass was increased. This was correlated with an increase in plasma radiation by metallic impurities, consistent with the increased sputtering yield by higher mass isotopes during the current ramp phase. Reduced electron temperature peaking can lead to magnetic shear reversal and the appearance of a 2/1 mode, which can lock, causing the JET massive gas injection system to be triggered to avoid an unmitigated disruption. The potential for a further reduction in electron temperature peaking in T and D-T plasmas could, therefore, result in an increased risk of disruptions. To mitigate this risk, electron temperature peaking measurements have been included in the real-time control system to allow this type of disruption to be avoided by central heating, density increase or early pulse termination. These experiments indicate the need for integrated modelling of impurity behaviour, including the plasma core, scrape-off layer and plasma wall interactions, to predict q-profile evolution in the current ramp phase and anticipate the effects of isotope changes. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
22. Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET.
- Author
-
Casson, F.J., Patten, H., Bourdelle, C., Breton, S., Citrin, J., Koechl, F., Sertoli, M., Angioni, C., Baranov, Y., Bilato, R., Belli, E.A., Challis, C.D., Corrigan, G., Czarnecka, A., Ficker, O., Frassinetti, L., Garzotti, L., Goniche, M., Graves, J.P., and Johnson, T.
- Subjects
TUNGSTEN ,PARTICLE beams ,DIFFUSION ,RADIATION - Abstract
The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multi-channel integrated modelling over multiple confinement times using first-principle based core transport models. Eight transport channels () are modelled predictively, with self-consistent sources, radiation and magnetic equilibrium, yielding a system with multiple non-linearities: This system can reproduce the observed radiative temperature collapse after several confinement times. W is transported inward by neoclassical convection driven by the main ion density gradients and enhanced by poloidal asymmetries due to centrifugal acceleration. The slow evolution of the bulk density profile sets the timescale for W accumulation. Modelling this phenomenon requires a turbulent transport model capable of accurately predicting particle and momentum transport (QuaLiKiz) and a neoclassical transport model including the effects of poloidal asymmetries (NEO) coupled to an integrated plasma simulator (JINTRAC). The modelling capability is applied to optimise the available actuators to prevent W accumulation, and to extrapolate in power and pulse length. Central NBI heating is preferred for high performance, but gives central deposition of particles and torque which increase the risk of W accumulation by increasing density peaking and poloidal asymmetry. The primary mechanism for ICRH to control W in JET is via its impact through turbulence in reducing main ion density peaking (which drives inward neoclassical convection), increased temperature screening and turbulent W diffusion. The anisotropy from ICRH also reduces poloidal asymmetry, but this effect is negligible in high rotation JET discharges. High power ICRH near the axis can sensitively mitigate against W accumulation, and dominant ion heating (e.g. He-3 minority) is predicted to provide more resilience to W accumulation than dominant electron heating (e.g. H minority) in the JET hybrid scenario. Extrapolation to DT plasmas finds 17.5 MW of fusion power and improved confinement compared to DD, due to reduced ion-electron energy exchange, and increased Ti/Te stabilisation of ITG instabilities. The turbulence reduction in DT increases density peaking and accelerates the arrival of W on axis; this may be mitigated by reducing the penetration of the beam particle source with an increased pedestal density. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
23. 1997 JET DT experiments revisited—comparative analysis of DD and DT stationary baseline discharges.
- Author
-
Kim, Hyun-Tae, Sips, A.C.C., Challis, C.D., Keeling, D., King, D., Joffrin, E., Szepesi, G., Buchanan, J., Horton, L.D., Yuan, X., and JET
- Subjects
COMPARATIVE studies ,DEUTERIUM ,ROTATIONAL motion ,TORQUE ,TOROIDAL plasma - Abstract
This paper compares the stationary ELMy H-mode baseline 50%–50% deuterium-tritium (DT) mixture discharges in the first high -power JET DT experimental campaign in 1997 (JET-DTE1) with the counterpart 100% deuterium (DD) baseline discharges which have the same engineering parameters, i.e. I
p , Bt , q95 , NBI power, plasma shape, no gas dosing, divertor structure, and the carbon wall. There is no difference in profile peaking of Te , Ti , and ne between the DT and the counterpart DD baseline discharges, indicating that there was no isotopic effect on the core transport in the stationary baseline DT discharges in the 1997 JET-DTE1. The core values of Te , Ti , and ne are higher in some DT discharges compared to their counterpart DD discharges, but this is attributed to the higher pedestal values, rather than any improvement in the core transport. The interpretive TRANSP simulations also show that the local heat diffusivity is not consistently different between the DT and the counterpart DD baseline discharges. The baseline discharges in the 1997 JET-DTE1 are also compared to the latest high-power ELMy H-mode baseline DD discharges with an ITER-like wall (ILW) in 2016. Despite the similar effective collisionality and ion heat deposition in the core, it was observed that Ti /Te is consistently close to unity in the 1997 JET-DTE1 discharges, while the 2016 JET baseline discharges have high Ti , exceeding Te , which enabled the highest fusion performance in the ITER-Like Wall. The high rotation frequency was the key factor in increasing Ti /Te in the 2016 JET baseline discharges, and it is also the main difference compared to the stationary baseline discharges in the 1997 JET-DTE1. Based on this, it is prospected that higher rotation frequency is the key factor to achieving high fusion power in the stationary baseline discharges in the 2020 JET-DTE2, and the plasma operation with the low gas dosing and increased torque available in the present NBI system would enable such a high rotation frequency. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
24. Tritium operation of the JET neutral beam systems
- Author
-
Jones, T.T.C., Bickley, A.J., Challis, C.D., Ciric, D., Cox, S.J., de Esch, H.P.L., Falter, H.-D., Godden, D.J., Martin, D., Stork, D., Svensson, S.L., Watson, M.J., and Young, D.
- Published
- 1999
- Full Text
- View/download PDF
25. Onset of tearing modes in JET advanced scenarios
- Author
-
Buratti P., Baruzzo M., Buttery R.J., Challis C.D., Chapman I.T., Crisanti F., Figini L., Gryaznevich M., Han H., Hender T.C., Hobirk J., Howell D.F., Imbeaux F., Joffrin E., Kwon O.J., Litaudon X., Maget P., Mailloux J., and JET-EFDA contributors
- Subjects
____ - Abstract
____
- Published
- 2011
26. Towards a Steady State Scenario with ITER Dimensionless Parameters in JET
- Author
-
Mailloux J., Litaudon X., De Vries P. Garcia J., Jenkins I., Alper B., Baranov Y., Baruzzo M., Brix M., Buratti P., Calabrò G., Cesario R., Challis C.D., Crombe K., Ford O., Frigione D., Giroud C., Goniche M., Howell D., Jacquet P., Joffrin E., Kirov K., Maget P., McDonald D.C., Pericoli-Ridolfini V., Plyusnin L., Rimini F., Schneider M., Sharapov S., Sozzi C., Voitsekhovitch I., Zabeo L., and JET-EFDA Contributors
- Subjects
____ - Abstract
___
- Published
- 2010
27. Development of a steady-state scenario in JET with dimensionless parameters approaching ITER target values
- Author
-
Mailloux J., Litaudon X., de Vries P., Alper B., Baranov Yu., Baruzzo M., Brix M., Buratti P., Calabrò G., Cesario R., Challis C.D., Crombe K., Ford O., Frigione D., Garcia J., Giroud C., Howell D., Jacquet Ph., Jenkins I., Joffrin E., Kirov K., Maget P., McDonald D.C., Pericoli-Ridolfini V., Plyusnin V., Rimini F., Sartori F., Schneider M., Sharapov S., Sozzi C., Voitsekhovitch I., Zabeo L., Zedda M.K., and JET-EFDA contributors
- Subjects
____ - Abstract
____
- Published
- 2009
28. Development of the 'Hybrid' scenario in JET
- Author
-
Joffrin E., Hobirk J., Brix M., Buratti P., Buttery R.J., Challis C.D., Crisanti F., Giroud C., Gryaznevich M., Hender T.C., Imbeaux F., Koslowski R., Luce T., Mantica P., McDonald F., Pinches S.D., Saarelma S., Sips A.C.C., Villone F., and Voitsekovitch I.
- Subjects
___ - Abstract
___
- Published
- 2008
29. Internal transport barrier dynamics with plasma rotation in JET
- Author
-
de Vries P.C., Joffrin E., Brix M., Challis C.D., Crombé K., Esposito B., Hawkes N.C., Giroud C., Hobirk J., Lönnroth J., Mantica P., Tala T., and JET-EFDA Contributors
- Subjects
___ - Abstract
___
- Published
- 2008
30. Pellet injection and high density ITB formation in JET advanced tokamak plasmas
- Author
-
Frigione, D., Garzotti, L., Challis, C.D., de Baar, M., de Vries, P., Brix, M., Garbet, X., Hawkes, N., Thyagaraja, A., and Zabeo, L.
- Published
- 2007
31. The 'Hybrid' scenario in JET: towards its validation for ITER
- Author
-
Joffrin, E., Sips, A.C.C., Artaud, J.F., Becoulet, A., Bertalot, L., Budny, R., Buratti, P., Belo, P., Challis, C.D., Crisanti, F., de Baar, M., de Vries, P., Gormezano, C., Giroud, C., Gruber, O., Huysmans, G.T. A., Imbeaux, F., Isayama, A., Litaudon, X., Lomas, P.J., McDonald, D.C., Na, Y.S., Pinches, S.D., Staebler, A., Tala, T., Tuccillo, A., and Zastrow, K.D.
- Published
- 2005
32. q=1 advanced tokamak experiments in JET and comparison with ASDEX Upgrade
- Author
-
Joffrin, E., Wolf, R., Alper, B., Baranov, Y., Challis, C.D., de Baar, M., Giroud, C., Gowers, C.W., Hawkes, N.C., Hender, T.C., Marachek, M., Mazon, D., Parail, V., Peeters, A., and Zastrow, K.D.
- Published
- 2002
33. The role of RF in the optimised shear scenario on JET
- Author
-
Söldner, F., Alper, B., Baranov, Yu.F, Bickley, A., Bondeson, A., Borba, D., Challis, C.D., Conway, G., Cottrell, G.A., de Benedetti, M., Deliyanakis, N., Ekedal, A., Erents, K., Gormezano, C., Govers, C., Hawkens, N.C., Hender, T.C., Huysmans, G.T.A., Joffrin, E., Jones, T.T.C., Litaudon, X., Liu, D.-H., Lomas, P.J., Maas, A., Mailloux, J., Mantsinen, M., Nave, F., Parail, V.V., Rimini, F., Sarazin, Y., Sips, A.C.C.C., Smeulders, P., Stamp, M.F., Tala, T.J.J., von Helleman, M., Ward, D.J., and Zastrow, K.-D.
- Published
- 1999
34. Development of advanced inductive scenarios for ITER.
- Author
-
Luce, T.C., Challis, C.D., Ide, S., Joffrin, E., Kamada, Y., Politzer, P.A., Schweinzer, J., Sips, A.C.C., Stober, J., Giruzzi, G., Kessel, C.E., Murakami, M., Na, Y.-S., Park, J.M., Polevoi, A.R., Budny, R.V., Citrin, J., Garcia, J., Hayashi, N., and Hobirk, J.
- Subjects
- *
TOKAMAKS , *PRESSURE , *EMPIRICAL research , *PLASMA gases , *DATABASES - Abstract
Since its inception in 2002, the International Tokamak Physics Activity topical group on Integrated Operational Scenarios (IOS) has coordinated experimental and modelling activity on the development of advanced inductive scenarios for applications in the ITER tokamak. The physics basis and the prospects for applications in ITER have been advanced significantly during that time, especially with respect to experimental results. The principal findings of this research activity are as follows. Inductive scenarios capable of higher normalized pressure (βN ⩾ 2.4) than the ITER baseline scenario (βN = 1.8) with normalized confinement at or above the standard H-mode scaling are well established under stationary conditions on the four largest diverted tokamaks (AUG, DIII-D, JET, JT-60U), demonstrated in a database of more than 500 plasmas from these tokamaks analysed here. The parameter range where high performance is achieved is broad in q95 and density normalized to the empirical density limit. MHD modes can play a key role in reaching stationary high performance, but also define the limits to achieved stability and confinement. Projection of performance in ITER from existing experiments uses empirical scalings and theory-based modelling. The status of the experimental validation of both approaches is summarized here. The database shows significant variation in the energy confinement normalized to standard H-mode confinement scalings, indicating the possible influence of additional physics variables absent from the scalings. Tests using the available information on rotation and the ratio of the electron and ion temperatures indicate neither of these variables in isolation can explain the variation in normalized confinement observed. Trends in the normalized confinement with the two dimensionless parameters that vary most from present-day experiments to ITER, gyroradius and collision frequency, are significant. Regression analysis on the multi-tokamak database has been performed, but it appears that the database is not conditioned sufficiently well to yield a new scaling for this type of plasma. Coordinated experiments on size scaling using the dimensionless parameter scaling approach find a weaker scaling with normalized gyroradius than the standard H-mode scaling. Preliminary studies on scaling with collision frequency show a favourable scaling stronger than the standard H-mode scaling. Coordinated modelling activity has resulted in successful benchmarking of modelling codes in the ITER regime. Validation of transport models using these codes on present-day experiments is in progress, but no single model has been shown to capture the variations seen in the experiments. However, projection to ITER using these models is in general agreement with the favourable projections found with the empirical scalings. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
35. First scenario development with the JET new ITER-like wall.
- Author
-
Joffrin, E., Baruzzo, M., Beurskens, M., Bourdelle, C., Brezinsek, S., Bucalossi, J., Buratti, P., Calabro, G., Challis, C.D., Clever, M., Coenen, J., Delabie, E., Dux, R., Lomas, P., Luna, E. de la, Vries, P. de, Flanagan, J., Frassinetti, L., Frigione, D., and Giroud, C.
- Subjects
PLASMA gases ,ELECTRIC breakdown ,NUCLEAR counters ,TUNGSTEN ,CARBON equivalents - Abstract
In the recent JET experimental campaigns with the new ITER-like wall (JET-ILW), major progress has been achieved in the characterization and operation of the H-mode regime in metallic environments: (i) plasma breakdown has been achieved at the first attempt and X-point L-mode operation recovered in a few days of operation; (ii) stationary and stable type-I ELMy H-modes with β
N ∼ 1.4 have been achieved in low and high triangularity ITER-like shape plasmas and are showing that their operational domain at H = 1 is significantly reduced with the JET-ILW mainly because of the need to inject a large amount of gas (above 1022 D s−1 ) to control core radiation; (iii) in contrast, the hybrid H-mode scenario has reached an H factor of 1.2–1.3 at βN of 3 for 2–3 s; and, (iv) in comparison to carbon equivalent discharges, total radiation is similar but the edge radiation is lower and Zeff of the order of 1.3–1.4. Strong core radiation peaking is observed in H-mode discharges at a low gas fuelling rate (i.e. below 0.5 × 1022 D s−1 ) and low ELM frequency (typically less than 10 Hz), even when the tungsten influx from the diverter is constant. High-Z impurity transport from the plasma edge to the core appears to be the dominant factor to explain these observations. This paper reviews the major physics and operational achievements and challenges that an ITER-like wall configuration has to face to produce stable plasma scenarios with maximized performance. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
36. Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade.
- Author
-
Meyer, H., Abel, I.G., Akers, R.J., Allan, A., Allan, S.Y., Appel, L.C., Asunta, O., Barnes, M., Barratt, N.C., Ayed, N. Ben, Bradley, J.W., Canik, J., Cahyna, P., Cecconello, M., Challis, C.D., Chapman, I.T., Ciric, D., Colyer, G., Conway, N.J., and Cox, M.
- Subjects
TOKAMAKS ,HEAT flux measurement ,FUSION reactor divertors ,PLASMA beam injection heating ,L-mode plasma confinement - Abstract
New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T
i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L–H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. Te inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfvén eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
37. Energetic particle instabilities in fusion plasmas.
- Author
-
Sharapov, S.E., Alper, B., Berk, H.L., Borba, D.N., Breizman, B.N., Challis, C.D., Classen, I.G.J., Edlund, E.M., Eriksson, J., Fasoli, A., Fredrickson, E.D., Fu, G.Y., Garcia-Munoz, M., Gassner, T., Ghantous, K., Goloborodko, V., Gorelenkov, N.N., Gryaznevich, M.P., Hacquin, S., and Heidbrink, W.W.
- Subjects
DEUTERIUM plasma ,ICR heating ,PLASMA beam injection heating ,TOKAMAKS ,INTERFEROMETRY - Abstract
Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
38. MHD activity in JET hot ion H mode discharges.
- Author
-
Nave, M.F.F., Ali-Arshad, S., Alper, B., Balet, B., Blank, H.J. De, Borba, D., Challis, C.D., Hellermann, M.G. Von, Hender, T.C., Huysmans, G.T.A., Kerner, W., Kramer, G.J., Porcelli, F., O'Rourke, J., Porte, L., Sadler, G.J., Smeulders, P., Sips, A.C.C., Stubberfield, P.M., and Stork, D.
- Published
- 1995
- Full Text
- View/download PDF
39. Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall
- Author
-
Joffrin, E., Abduallev, S., Abhangi, M., Abreu, P., Afanasev, V., Afzal, M., Aggarwal, K.M., Ahlgren, T., Aho-Mantila, L., Aiba, N., Airila, M., Alarcon, T., Albanese, R., Alegre, D., Aleiferis, S., Alessi, E., Aleynikov, P., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amosov, V., Andersson Sundén, E., Andrews, R., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arshad, S., Artaud, J., Arter, W., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Asztalos, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M., Ayres, C., Baciero, A., Baião, D., Balboa, I., Balden, M., Balshaw, N., Bandaru, V.K., Banks, J., Baranov, Y.F., Barcellona, C., Barnard, T., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baumane, L., Bauvir, B., Baylor, L., Beaumont, P.S., Beckers, M., Beckett, B., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Belonohy, É., Benayas, J., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besiliu, C., Betar, H., Beurskens, M., Bielecki, J., Biewer, T., Bilato, R., Biletskyi, O., Bílková, P., Binda, F., Birkenmeier, G., Bizarro, J.P.S., Björkas, C., Blackburn, J., Blackman, T.R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bogar, O., Bohm, P., Bohm, T., Bolshakova, I., Bolzonella, T., Bonanomi, N., Boncagni, L., Bonfiglio, D., Bonnin, X., Boom, J., Borba, D., Borodin, D., Borodkina, I., Boulbe, C., Bourdelle, C., Bowden, M., Bowman, C., Boyce, T., Boyer, H., Bradnam, S.C., Braic, V., Bravanec, R., Breizman, B., Brennan, D., Breton, S., Brett, A., Brezinsek, S., Bright, M., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, B., Brunetti, D., Bruno, E., Buch, J., Buchanan, J., Buckingham, R., Buckley, M., Bucolo, M., Budny, R., Bufferand, H., Buller, S., Bunting, P., Buratti, P., Burckhart, A., Burroughes, G., Buscarino, A., Busse, A., Butcher, D., Butler, B., Bykov, I., Cahyna, P., Calabrò, G., Calacci, L., Callaghan, D., Callaghan, J., Calvo, I., Camenen, Y., Camp, P., Campling, D.C., Cannas, B., Capat, A., Carcangiu, S., Card, P., Cardinali, A., Carman, P., Carnevale, D., Carr, M., Carralero, D., Carraro, L., Carvalho, B.B., Carvalho, I., Carvalho, P., Carvalho, D.D., Casson, F.J., Castaldo, C., Catarino, N., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavedon, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Challis, C.D., Chandra, D., Chang, C.S., Chankin, A., Chapman, I.T., Chapman, B., Chapman, S.C., Chernyshova, M., Chiariello, A., Chitarin, G., Chmielewski, P., Chone, L., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, M., Clark, E., Clarkson, R., Clay, R., Clements, C., Coad, J.P., Coates, P., Cobalt, A., Coccorese, V., Cocilovo, V., Coelho, R., Coenen, J.W., Coffey, I., Colas, L., Colling, B., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, S.R., Corradino, C., Corre, Y., Corrigan, G., Coster, D., Craciunescu, T., Cramp, S., Crapper, C., Crisanti, F., Croci, G., Croft, D., Crombé, K., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curson, P., Curuia, M., Czarnecka, A., Czarski, T., Cziegler, I., Dabirikhah, H., Dal Molin, A., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., David, P., Davies, A., Davis, W., Dawson, K., Day, I., Day, C., De Bock, M., De Castro, A., De Dominici, G., De La Cal, E., De La Luna, E., De Masi, G., De Temmerman, G., De Tommasi, G., De Vries, P., Deane, J., Dejarnac, R., Del Sarto, D., Delabie, E., Demerdzhiev, V., Dempsey, A., Den Harder, N., Dendy, R.O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dickinson, D., Dinca, P., Dittmar, T., Dobrashian, J., Doerk, H., Doerner, R.P., Domptail, F., Donné, T., Dorling, S.E., Douai, D., Dowson, S., Drenik, A., Dreval, M., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B.P., Dux, R., Dylst, K., Edappala, P.V., Edwards, A.M., Edwards, J.S., Eich, Th., Eidietis, N., Eksaeva, A., Ellis, R., Ellwood, G., Elsmore, C., Emery, S., Enachescu, M., Ericsson, G., Eriksson, J., Eriksson, F., Eriksson, L.G., Ertmer, S., Esquembri, S., Esquisabel, A.L., Esser, H.G., Ewart, G., Fable, E., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Farahani, A., Fasoli, A., Faugeras, B., Fazinić, S., Felici, F., Felton, R.C., Feng, S., Fernades, A., Fernandes, H., Ferreira, J., Ferreira, D.R., Ferrò, G., Fessey, J.A., Ficker, O., Field, A., Fietz, S., Figini, L., Figueiredo, J., Figueiredo, A., Fil, N., Finburg, P., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Flinders, K., Foley, S., Fonnesu, N., Fontdecaba, J.M., Formisano, A., Forsythe, L., Fortuna, L., Fransson, E., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Fridström, R., Frigione, D., Fuchs, V., Fusco, V., Futatani, S., Gál, K., Galassi, D., Gałązka, K., Galeani, S., Gallart, D., Galvão, R., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardener, M., Garzotti, L., Gaspar, J., Gaudio, P., Gear, D., Gebhart, T., Gee, S., Geiger, B., Gelfusa, M., George, R., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Ghezzi, F., Giacalone, J.C., Giacomelli, L., Giacometti, G., Gibson, K., Giegerich, T., Gil, L., Gilbert, M.R., Gin, D., Giovannozzi, E., Giroud, C., Glöggler, S., Goff, J., Gohil, P., Goloborod’ko, V., Goloborodko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodyear, A., Gorini, G., Görler, T., Goulding, R., Goussarov, A., Graham, B., Graves, J.P., Greuner, H., Grierson, B., Griffiths, J., Griph, S., Grist, D., Groth, M., Grove, R., Gruca, M., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gulati, S., Gurl, C., Gutierrez-Milla, A., Utoh, H.H., Hackett, L., Hacquin, S., Hager, R., Hakola, A., Halitovs, M., Hall, S., Hallworth-Cook, S., Ham, C., Hamed, M., Hamilton, N., Hamlyn-Harris, C., Hammond, K., Hancu, G., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D.R., Haupt, T., Hawes, J., Hawkes, N.C., Hawkins, J., Hawkins, P., Hazel, S., Heesterman, P., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O., Hender, T.C., Henderson, S.S., Henderson, M., Henriques, R., Hepple, D., Herfindal, J., Hermon, G., Hidalgo, C., Higginson, W., Highcock, E.G., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Ho, A., Hobirk, J., Hogben, C.H.A., Hogeweij, G.M.D., Hollingsworth, A., Hollis, S., Hölzl, M., Honore, J.-J., Hook, M., Hopley, D., Horáček, J., Hornung, G., Horton, A., Horton, L.D., Horvath, L., Hotchin, S.P., Howell, R., Hubbard, A., Huber, A., Huber, V., Huddleston, T.M., Hughes, M., Hughes, J., Huijsmans, G.T.A., Huynh, P., Hynes, A., Igaune, I., Iglesias, D., Imazawa, N., Imríšek, M., Incelli, M., Innocente, P., Ivanova-Stanik, I., Ivings, E., Jachmich, S., Jackson, A., Jackson, T., Jacquet, P., Jansons, J., Jaulmes, F., Jednoróg, S., Jenkins, I., Jepu, I., Johnson, T., Johnson, R., Johnston, J., Joita, L., Joly, J., Jonasson, E., Jones, T., Jones, C., Jones, L., Jones, G., Jones, N., Juvonen, M., Hoshino, K.K., Kallenbach, A., Kalsey, M., Kaltiaisenaho, T., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D.L., Keenan, F.P., Kempenaars, M., Kent, O., Kent, J., Keogh, K., Khilkevich, E., Kim, H.-T., Kim, H.T., King, R., King, D., Kinna, D.J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klas, M., Klepper, C., Klix, A., Knight, M., Knight, P., Knipe, S., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Koechl, F., Kogut, D., Koivuranta, S., Kolesnichenko, Y., Kollo, Z., Kominis, Y., Köppen, M., Korolczuk, S., Kos, B., Koslowski, H.R., Kotschenreuther, M., Koubiti, M., Kovaldins, R., Kovanda, O., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwon, O.J., Laguardia, L., Lahtinen, A., Laing, A., Lalousis, P., Lam, N., Lamb, C., Lambertz, H.T., Lang, P.T., Lanthaler, S., Lascas Neto, E., Łaszyńska, E., Lawless, R., Lawson, K.D., Lazaros, A., Lazzaro, E., Leach, R., Learoyd, G., Leerink, S., Lefebvre, X., Leggate, H.J., Lehmann, J., Lehnen, M., Leichauer, P., Leichtle, D., Leipold, F., Lengar, I., Lennholm, M., Lepiavko, B., Leppänen, J., Lerche, E., Lescinskis, A., Lescinskis, B., Lesnoj, S., Leyland, M., Leysen, W., Li, Y., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Litaudon, X., Liu, G., Lloyd, B., Lo Schiavo, V.P., Loarer, T., Loarte, A., Lomanowski, B., Lomas, P.J., Lönnroth, J., López, J.M., Lorenzini, R., Losada, U., Loughlin, M., Lowry, C., Luce, T., Lucock, R., Lukin, A., Luna, C., Lungaroni, M., Lungu, C.P., Lungu, M., Lunniss, A., Lunt, T., Lupelli, I., Lutsenko, V., Lyssoivan, A., Macheta, P., Macusova, E., Magesh, B., Maggi, C., Maggiora, R., Mahesan, S., Maier, H., Mailloux, J., Maingi, R., Makwana, R., Malaquias, A., Malinowski, K., Malizia, A., Manas, P., Manduchi, G., Manso, M.E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marconato, N., Mariani, A., Marin, M., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marsh, J., Martin, A., Martín De Aguilera, A., Martín-Solís, J.R., Martone, R., Martynova, Y., Maruyama, S., Maslov, M., Matejcik, S., Mattei, M., Matthews, G.F., Matveev, D., Matveeva, E., Mauriya, A., Maviglia, F., May-Smith, T., Mayer, M., Mayoral, M.L., Mazon, D., Mazzotta, C., McAdams, R., McCarthy, P.J., McClements, K.G., McCormack, O., McCullen, P.A., McDonald, D., McHardy, M., McKean, R., McKehon, J., McNamee, L., Meadowcroft, C., Meakins, A., Medley, S., Meigh, S., Meigs, A.G., Meisl, G., Meiter, S., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merle, A., Merriman, P., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Michling, R., Milanesio, D., Militello, F., Militello-Asp, E., Milocco, A., Miloshevsky, G., Mink, F., Minucci, S., Miron, I., Mistry, S., Miyoshi, Y., Mlynář, J., Moiseenko, V., Monaghan, P., Monakhov, I., Moon, S., Mooney, R., Moradi, S., Morales, J., Moran, J., Mordijck, S., Moreira, L., Moro, F., Morris, J., Moser, L., Mosher, S., Moulton, D., Mrowetz, T., Muir, A., Muraglia, M., Murari, A., Muraro, A., Murphy, S., Muscat, P., Muthusonai, N., Myers, C., Asakura, N.N., N’Konga, B., Nabais, F., Naish, R., Naish, J., Nakano, T., Napoli, F., Nardon, E., Naulin, V., Nave, M.F.F., Nedzelskiy, I., Nemtsev, G., Nesenevich, V., Nespoli, F., Neto, A., Neu, R., Neverov, V.S., Newman, M., Ng, S., Nicassio, M., Nielsen, A.H., Nina, D., Nishijima, D., Noble, C., Nobs, C.R., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Normanton, R., Noterdaeme, J.M., Nowak, S., Nunes, I., O’Gorman, T., O’Mullane, M., Oberkofler, M., Oberparleiter, M., Odupitan, T., Ogawa, M.T., Okabayashi, M., Oliver, H., Olney, R., Omoregie, L., Ongena, J., Orsitto, F., Orszagh, J., Osborne, T., Otin, R., Owen, A., Owen, T., Paccagnella, R., Packer, L.W., Pajuste, E., Pamela, S., Panja, S., Papp, P., Papp, G., Parail, V., Pardanaud, C., Parra Diaz, F., Parsloe, A., Parsons, N., Parsons, M., Pasqualotto, R., Passeri, M., Patel, A., Pathak, S., Patten, H., Pau, A., Pautasso, G., Pavlichenko, R., Pavone, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pehkonen, S.-P., Peluso, E., Penot, C., Penzo, J., Pepperell, K., Pereira, R., Perelli Cippo, E., Perez Von Thun, C., Pericoli, V., Peruzzo, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petržilka, V., Philipps, V., Pigatto, L., Pillon, M., Pinches, S., Pintsuk, G., Piovesan, P., Pires De Sa, W., Pires Dos Reis, A., Piron, L., Piron, C., Pironti, A., Pisano, F., Pitts, R., Plyusnin, V., Poli, F.M., Pomaro, N., Pompilian, O.G., Pool, P., Popovichev, S., Poradziński, M., Porfiri, M.T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Poulipoulis, G., Powell, T., Prajapati, V., Prakash, R., Predebon, I., Prestopino, G., Price, D., Price, M., Price, R., Primetzhofer, D., Prior, P., Pucella, G., Puglia, P., Puiatti, M.E., Purahoo, K., Pusztai, I., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M., Raj, P., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C.J., Rasmussen, D., Rasmussen, J.J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rebai, M., Reed, A., Réfy, D., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S.D.A., Reynolds, S., Ricci, D., Richiusa, M., Rigamonti, D., Rimini, F.G., Risner, J., Riva, M., Rivero-Rodriguez, J., Roach, C., Robins, R., Robinson, S., Robson, D., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, M., Romanelli, F., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Sáez, X., Safi, E., Sahlberg, A., Saibene, G., Saleem, M., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samm, U., Sandiford, D., Santa, P., Santala, M.I.K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schluck, F., Schlummer, T., Schmid, K., Schmuck, S., Schöpf, K., Schweinzer, J., Schwörer, D., Scott, S.D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S.E., Shaw, A., Sheikh, H., Shepherd, A., Shevelev, A., Shiraki, D., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, J., Silva, A., Silva, C., Silvagni, D., Simmons, P., Simpson, J., Sinha, A., Sipilä, S.K., Sips, A.C.C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Skvara, V., Slade, B., Smith, R., Smith, P., Smith, S.F., Snoj, L., Soare, S., Solano, E.R., Somers, A., Sommariva, C., Sonato, P., Sos, M., Sousa, J., Sozzi, C., Spagnolo, S., Sparapani, P., Spelzini, T., Spineanu, F., Sprada, D., Sridhar, S., Stables, G., Stallard, J., Stamatelatos, I., Stamp, M.F., Stan-Sion, C., Stancar, Z., Staniec, P., Stankūnas, G., Stano, M., Stavrou, C., Stefanikova, E., Stepanov, I., Stephen, A.V., Stephen, M., Stephens, J., Stevens, B., Stober, J., Stokes, C., Strachan, J., Strand, P., Strauss, H.R., Ström, P., Studholme, W., Subba, F., Suchkov, E., Summers, H.P., Sun, H., Sutton, N., Svensson, J., Sytnykov, D., Szabolics, T., Szepesi, G., Suzuki, T.T., Tabarés, F., Tadić, T., Tal, B., Tál, B., Tala, T., Taliercio, C., Tallargio, A., Tanaka, K., Tang, W., Tardocchi, M., Tatali, R., Taylor, D., Tegnered, D., Telesca, G., Teplova, N., Teplukhina, A., Terranova, D., Terry, C., Testa, D., Tholerus, E., Thomas, J., Thompson, V.K., Thornton, A., Tierens, W., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya, D., Tskhakaya Jun, D., Turner, I., Turner, M.M., Turnyanskiy, M., Tvalashvili, G., Tyshchenko, M., Uccello, A., Uljanovs, J., Urano, H., Urban, A., Urbanczyk, G., Uytdenhouwen, I., Vadgama, A., Valcarcel, D., Vale, R., Valentinuzzi, M., Valerii, K., Valisa, M., Vallejos Olivares, P., Valovic, M., Van Eester, D., Van Renterghem, W., Van Rooij, G.J., Varje, J., Vartanian, S., Vasava, K., Vasilopoulou, T., Vecsei, M., Vega, J., Ventre, S., Verdoolaege, G., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincent, M., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Voltolina, D., Von Toussaint, U., Vondráček, P., Vukšić, M., Wakeling, B., Waldon, C., Walkden, N., Walker, R., Walker, M., Walsh, M., Wang, N., Wang, E., Warder, S., Warren, R., Waterhouse, J., Watts, C., Wauters, T., Webb, M., Weckmann, A., Weiland, J., Weiland, M., Weisen, H., Weiszflog, M., Welch, P., West, A., Wheatley, M., Wheeler, S., Whitehead, A.M., Whittaker, D., Widdowson, A.M., Wiesen, S., Wilkie, G., Williams, J., Willoughby, D., Wilson, J., Wilson, I., Wilson, H.R., Wischmeier, M., Withycombe, A., Witts, D., Wolfrum, E., Wood, R., Woodley, R., Woodley, C., Wray, S., Wright, J.C., Wright, P., Wukitch, S., Wynn, A., Xiang, L., Xu, T., Xue, Y., Yadikin, D., Yakovenko, Y., Yanling, W., Yavorskij, V., Young, I., Young, R., Young, D., Zacks, J., Zagorski, R., Zaitsev, F.S., Zakharov, L., Zanino, R., Zarins, A., Zarins, R., Zarzoso Fernandez, D., Zastrow, K.D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zocco, A., Zoita, V., Zoletnik, S., Zwingmann, W., and Zychor, I.
- Subjects
13. Climate action ,JET ,tritium ,fusion power ,isotope ,7. Clean energy - Abstract
For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D–T mixtures since 1997 and the first ever D–T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D–T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D–T preparation. This intense preparation includes the review of the physics basis for the D–T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D–T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the threeions scheme), new diagnostics (neutron camera and spectrometer, active Alfvèn eigenmode antennas, neutral gauges, radiation hard imaging systems…) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D–T campaign provides an incomparable source of information and a basis for the future D–T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
40. Experience with helium neutral beam systems.
- Author
-
de Esch, H.P.L., Massmann, P., Bickley, A.J., Challis, C.D., Deschamps, G.H., Falter, H.D., Hemsworth, R.S., Jones, T.T.C., Stork, D., Svensson, L., and Young, D.
- Published
- 1991
- Full Text
- View/download PDF
41. Reliability study of the JET neutral injection system.
- Author
-
Challis, C.D., Bickley, A.J., Browne, A., de Esch, H.P.L., Fogg, M., Jones, T.T.C., Stork, D., and Svensson, L.
- Published
- 1991
- Full Text
- View/download PDF
42. The JET active phase gas introduction systems for neutral beam injection and beamline commissioning and operation with tritium.
- Author
-
Svensson, L., Bickley, A., Browne, A., Challis, C.D., Cox, S., de Esch, H., Falter, H.D., Godden, D., Jones, T.T.C., Konarski, A., Martin, D., and Young, D.
- Published
- 1998
- Full Text
- View/download PDF
43. Beamline duct gas release conditioning and the upgraded duct wall protection system of the JET neutral injectors.
- Author
-
Bickley, A.J., Jones, T.T.C., Papastergiou, S., Challis, C.D., Davies, J.F., de Esch, H.P.L., Stork, D., and Altmann, H.
- Published
- 1989
- Full Text
- View/download PDF
44. Review of neutral beam heating on JET for physics experiments and the production of high fusion performance plasmas
- Author
-
Challis, C.D.
- Published
- 1995
- Full Text
- View/download PDF
45. Beam properties of the enhanced JET PINIs
- Author
-
Ciric, D., Challis, C.D., de Esch, H.P.L., Falter, H-.D., Godden, D., Holmes, A.J.T., Stork, D., and Thompson, E.
- Published
- 1997
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.