1. MP3net: coherent, minute-long music generation from raw audio with a simple convolutional GAN
- Author
-
Broek, Korneel van den
- Subjects
FOS: Computer and information sciences ,Sound (cs.SD) ,Computer Science - Machine Learning ,Audio and Speech Processing (eess.AS) ,FOS: Electrical engineering, electronic engineering, information engineering ,Computer Science - Sound ,Machine Learning (cs.LG) ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
We present a deep convolutional GAN which leverages techniques from MP3/Vorbis audio compression to produce long, high-quality audio samples with long-range coherence. The model uses a Modified Discrete Cosine Transform (MDCT) data representation, which includes all phase information. Phase generation is hence integral part of the model. We leverage the auditory masking and psychoacoustic perception limit of the human ear to widen the true distribution and stabilize the training process. The model architecture is a deep 2D convolutional network, where each subsequent generator model block increases the resolution along the time axis and adds a higher octave along the frequency axis. The deeper layers are connected with all parts of the output and have the context of the full track. This enables generation of samples which exhibit long-range coherence. We use MP3net to create 95s stereo tracks with a 22kHz sample rate after training for 250h on a single Cloud TPUv2. An additional benefit of the CNN-based model architecture is that generation of new songs is almost instantaneous., 11 pages, 8 figures, samples and source code available on https://korneelvdbroek.github.io/mp3net
- Published
- 2021