195 results on '"Bernhardt BC"'
Search Results
2. Mapping thalamocortical network pathology in temporal lobe epilepsy.
- Author
-
Bernhardt BC, Bernasconi N, Kim H, and Bernasconi A
- Published
- 2012
- Full Text
- View/download PDF
3. Increased temporolimbic cortical folding complexity in temporal lobe epilepsy.
- Author
-
Voets NL, Bernhardt BC, Kim H, Yoon U, Bernasconi N, Voets, N L, Bernhardt, B C, Kim, H, Yoon, U, and Bernasconi, N
- Published
- 2011
- Full Text
- View/download PDF
4. Cortical thickness analysis in temporal lobe epilepsy: Reproducibility and relation to outcome.
- Author
-
Bernhardt BC, Bernasconi N, Concha L, and Bernasconi A
- Published
- 2010
- Full Text
- View/download PDF
5. Temporal lobe epilepsy is associated with atrophy of limbic thalamic nuclei
- Author
-
Bernhardt, BC, Kim, H, Natsume, J, Bernasconi, N, and Bernasconi, A
- Published
- 2009
- Full Text
- View/download PDF
6. Cortical atrophy in temporal lobe epilepsy: distinguishing aging from disease progression
- Author
-
Bernhardt, BC, Worsley, KJ, Evans, AC, Bernasconi, A, and Bernasconi, N
- Published
- 2009
- Full Text
- View/download PDF
7. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology.
- Author
-
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, and Bernhardt BC
- Subjects
- Humans, Male, Female, Adult, Middle Aged, Temporal Lobe physiopathology, Temporal Lobe pathology, Temporal Lobe diagnostic imaging, Young Adult, Neocortex physiopathology, Neocortex diagnostic imaging, Neocortex pathology, Connectome methods, Memory Disorders etiology, Memory Disorders physiopathology, Memory Disorders pathology, Nerve Net diagnostic imaging, Nerve Net physiopathology, Nerve Net pathology, Epilepsy, Temporal Lobe physiopathology, Epilepsy, Temporal Lobe pathology, Epilepsy, Temporal Lobe diagnostic imaging, Memory, Episodic, Magnetic Resonance Imaging, Hippocampus pathology, Hippocampus diagnostic imaging, Hippocampus physiopathology, Semantics
- Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
8. Advanced tractography-guided laser ablation of a perirolandic long-term epilepsy-associated tumor: illustrative case.
- Author
-
Yuan-Mou Yang J, Cottier R, Beare R, Genc S, Diadori P, Ngo A, Sahlas E, Bernhardt BC, Arbour G, Bouthillier A, Hadjinicolaou A, and Weil AG
- Abstract
Background: Microsurgical resection of drug-resistant epilepsy-associated perirolandic lesions can lead to postoperative motor impairment. Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive alternative, offering reduced surgical risks and improved neurological outcomes. Electrophysiological tools routinely used for motor mapping in resective microsurgery are incompatible with intraoperative MRI. The utilization of advanced neuroimaging adjuncts for eloquent brain mapping during MRgLITT is imperative. The authors present the case of a 17-year-old athlete who underwent MRgLITT for a perirolandic long-term epilepsy-associated tumor (LEAT). They performed probabilistic multi-tissue constrained spherical deconvolution (MT-CSD) tractography to delineate the corticospinal tract (CST) for presurgical planning and intraoperative image guidance. The CST tractography was integrated into neuronavigation and MRgLITT workstation software to guide the ablation while monitoring the CST throughout the procedure., Observations: The integration of CST tractography into neuronavigation workstation planning and laser ablation workstation thermoablation is feasible and practical, facilitating complete ablation of a deep-seated perirolandic LEAT while preserving motor function., Lessons: Probabilistic MT-CSD tractography enhanced MRgLITT planning as well as intraprocedural CST visualization and preservation, leading to a favorable functional outcome. The limitations of tractography and the predictability of thermal output distribution compared to the gold standard of microsurgical resection merit further discussion. https://thejns.org/doi/10.3171/CASE24139.
- Published
- 2024
- Full Text
- View/download PDF
9. Brain Networks for Cortical Atrophy and Responsive Neurostimulation in Temporal Lobe Epilepsy.
- Author
-
Larivière S, Schaper FLWVJ, Royer J, Rodríguez-Cruces R, Xie K, DeKraker J, Ngo A, Sahlas E, Chen J, Tavakol S, Drew W, Morton-Dutton M, Warren AEL, Baratono SR, Rolston JD, Weng Y, Bernasconi A, Bernasconi N, Concha L, Zhang Z, Frauscher B, Bernhardt BC, and Fox MD
- Abstract
Importance: Drug-resistant temporal lobe epilepsy (TLE) has been associated with hippocampal pathology. Most surgical treatment strategies, including resection and responsive neurostimulation (RNS), focus on this disease epicenter; however, imaging alterations distant from the hippocampus, as well as emerging data from responsive neurostimulation trials, suggest conceptualizing TLE as a network disorder., Objective: To assess whether brain networks connected to areas of atrophy in the hippocampus align with the topography of distant neuroimaging alterations and RNS response., Design, Setting, and Participants: This retrospective case-control study was conducted between July 2009 and June 2022. Data collection for this multicenter, population-based study took place across 4 tertiary referral centers in Montréal, Canada; Querétaro, México; Nanjing, China; and Salt Lake City, Utah. Eligible patients were diagnosed with TLE according to International League Against Epilepsy criteria and received either neuroimaging or neuroimaging and RNS to the hippocampus. Patients with encephalitis, traumatic brain injury, or bilateral TLE were excluded., Main Outcomes and Measures: Spatial alignment between brain network topographies., Results: Of the 110 eligible patients, 94 individuals diagnosed with TLE were analyzed (51 [54%] female; mean [SD] age, 31.3 [10.9] years). Hippocampal thickness maps in TLE were compared to 120 healthy control individuals (66 [55%] female; mean [SD] age, 29.8 [9.5] years), and areas of atrophy were identified. Using an atlas of normative connectivity (n = 1000), 2 brain networks were identified that were functionally connected to areas of hippocampal atrophy. The first network was defined by positive correlations to temporolimbic, medial prefrontal, and parietal regions, whereas the second network by negative correlations to frontoparietal regions. White matter changes colocalized to the positive network (t93 = -3.82; P = 2.44 × 10-4). In contrast, cortical atrophy localized to the negative network (t93 = 3.54; P = 6.29 × 10-3). In an additional 38 patients (20 [53%] female; mean [SD] age, 35.8 [11.3] years) treated with RNS, connectivity between the stimulation site and atrophied regions within the negative network was associated with seizure reduction (t212 = -2.74; P = .007)., Conclusions and Relevance: The findings in this study indicate that distributed pathology in TLE may occur in brain networks connected to the hippocampal epicenter. Connectivity to these same networks was associated with improvement following RNS. A network approach to TLE may reveal therapeutic targets outside the traditional target in the hippocampus.
- Published
- 2024
- Full Text
- View/download PDF
10. Contracted functional connectivity profiles in autism.
- Author
-
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, and Bernhardt BC
- Subjects
- Humans, Male, Young Adult, Adult, Adolescent, Autism Spectrum Disorder physiopathology, Autism Spectrum Disorder diagnostic imaging, Autistic Disorder physiopathology, Autistic Disorder diagnostic imaging, Brain diagnostic imaging, Brain physiopathology, Case-Control Studies, Child, Nerve Net diagnostic imaging, Nerve Net physiopathology, Neural Pathways physiopathology, Neural Pathways diagnostic imaging, Connectome, Magnetic Resonance Imaging
- Abstract
Objective: Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes., Methods: We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types., Results: Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores., Limitations: Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts., Conclusions: Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
11. Differential increase of hippocampal subfield volume after socio-affective mental training relates to reductions in diurnal cortisol.
- Author
-
Valk SL, Engert V, Puhlmann L, Linz R, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, and Singer T
- Subjects
- Humans, Male, Female, Adult, Young Adult, Mindfulness, Circadian Rhythm physiology, Stress, Psychological, Hydrocortisone metabolism, Hippocampus physiology, Magnetic Resonance Imaging
- Abstract
The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills ( Affect module), as compared to socio-cognitive skills ( Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults., Competing Interests: SV, VE, LP, RL, BC, AB, NB, BB, TS No competing interests declared, (© 2023, Valk, Engert et al.)
- Published
- 2024
- Full Text
- View/download PDF
12. Relating sex-bias in human cortical and hippocampal microstructure to sex hormones.
- Author
-
Küchenhoff S, Bayrak Ş, Zsido RG, Saberi A, Bernhardt BC, Weis S, Schaare HL, Sacher J, Eickhoff S, and Valk SL
- Subjects
- Humans, Female, Male, Young Adult, Adult, Sex Characteristics, Magnetic Resonance Imaging methods, Cross-Sectional Studies, Hippocampus metabolism, Hippocampus diagnostic imaging, Gonadal Steroid Hormones metabolism, Connectome, Cerebral Cortex metabolism, Cerebral Cortex diagnostic imaging
- Abstract
Determining sex-bias in brain structure is of great societal interest to improve diagnostics and treatment of brain-related disorders. So far, studies on sex-bias in brain structure predominantly focus on macro-scale measures, and often ignore factors determining this bias. Here we study sex-bias in cortical and hippocampal microstructure in relation to sex hormones. Investigating quantitative intracortical profiling in-vivo using the T1w/T2w ratio in 1093 healthy females and males of the cross-sectional Human Connectome Project young adult sample, we find that regional cortical and hippocampal microstructure differs between males and females and that the effect size of this sex-bias varies depending on self-reported hormonal status in females. Microstructural sex-bias and expression of sex hormone genes, based on an independent post-mortem sample, are spatially coupled. Lastly, sex-bias is most pronounced in paralimbic areas, with low laminar complexity, which are predicted to be most plastic based on their cytoarchitectural properties. Albeit correlative, our study underscores the importance of incorporating sex hormone variables into the investigation of brain structure and plasticity., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. MULTIMODAL NEURAL CORRELATES OF CHILDHOOD PSYCHOPATHOLOGY.
- Author
-
Royer J, Kebets V, Piguet C, Chen J, Ooi LQR, Kirschner M, Siffredi V, Misic B, Yeo BTT, and Bernhardt BC
- Abstract
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology ( p ) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples, supporting generalizability, and robust to variations in analytical parameters. Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers., Competing Interests: Declarations of interest: None
- Published
- 2024
- Full Text
- View/download PDF
14. ANPHY-Sleep: an Open Sleep Database from Healthy Adults Using High-Density Scalp Electroencephalogram.
- Author
-
Wei X, Avigdor T, Ho A, Minato E, Garcia-Asensi A, Royer J, Wang YL, Travnicek V, Schiller K, Bernhardt BC, and Frauscher B
- Subjects
- Humans, Adult, Female, Male, Databases, Factual, Electroencephalography, Sleep, Polysomnography, Scalp
- Abstract
Well-documented sleep datasets from healthy adults are important for sleep pattern analysis and comparison with a wide range of neuropsychiatric disorders. Currently, available sleep datasets from healthy adults are acquired using low-density arrays with a minimum of four electrodes in a typical sleep montage. The low spatial resolution is thus prohibitive for the analysis of the spatial structure of sleep. Here we introduce an open-access sleep dataset from 29 healthy adults (13 female, aged 32.17 ± 6.30 years) acquired at the Montreal Neurological Institute. The dataset includes overnight polysomnograms with high-density scalp electroencephalograms incorporating 83 electrodes, electrocardiogram, electromyogram, electrooculogram, and an average of electrode positions using manual co-registrations and sleep scoring annotations. Data characteristics and group-level analysis of sleep properties were assessed. The database can be accessed through ( https://doi.org/10.17605/OSF.IO/R26FH ). This is the first high-density electroencephalogram open sleep database from healthy adults, allowing researchers to investigate sleep physiology at high spatial resolution. We expect that this database will serve as a valuable resource for studying sleep physiology and for benchmarking sleep pathology., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
15. MRI-Derived Modeling of Disease Progression Patterns in Patients With Temporal Lobe Epilepsy.
- Author
-
Lee HM, Fadaie F, Gill RS, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, and Bernasconi N
- Subjects
- Humans, Female, Male, Adult, Middle Aged, Cross-Sectional Studies, Electroencephalography, Brain diagnostic imaging, Brain pathology, Brain physiopathology, Drug Resistant Epilepsy diagnostic imaging, Drug Resistant Epilepsy physiopathology, Drug Resistant Epilepsy pathology, Young Adult, White Matter diagnostic imaging, White Matter pathology, Gray Matter diagnostic imaging, Gray Matter pathology, Neuropsychological Tests, Epilepsy, Temporal Lobe diagnostic imaging, Epilepsy, Temporal Lobe physiopathology, Disease Progression, Magnetic Resonance Imaging
- Abstract
Background and Objectives: Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data., Methods: We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions., Results: We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ
2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 ( d = 0.65 and d = 0.50, pFDR < 0.05) and S2 ( d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 ( T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 ( T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span ( T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons., Discussion: Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.- Published
- 2024
- Full Text
- View/download PDF
16. Associations of Cerebral Blood Flow Patterns With Gray and White Matter Structure in Patients With Temporal Lobe Epilepsy.
- Author
-
Ngo A, Royer J, Rodriguez-Cruces R, Xie K, DeKraker J, Auer H, Tavakol S, Lam J, Schrader DV, Dudley RWR, Bernasconi A, Bernasconi N, Frauscher B, Lariviere S, and Bernhardt BC
- Subjects
- Humans, Female, Male, Adult, Magnetic Resonance Imaging, Middle Aged, Diffusion Magnetic Resonance Imaging, Supervised Machine Learning, Young Adult, Drug Resistant Epilepsy physiopathology, Drug Resistant Epilepsy diagnostic imaging, Drug Resistant Epilepsy pathology, Epilepsy, Temporal Lobe physiopathology, Epilepsy, Temporal Lobe diagnostic imaging, White Matter diagnostic imaging, White Matter pathology, White Matter blood supply, Cerebrovascular Circulation physiology, Gray Matter diagnostic imaging, Gray Matter blood supply, Gray Matter pathology, Gray Matter physiopathology
- Abstract
Background and Objectives: Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables., Methods: We included individuals with and without pharmaco-resistant TLE who underwent multimodal 3T MRI, including arterial spin labelling, structural, and diffusion-weighted imaging. Using surface-based MRI mapping, we generated individualized cortico-subcortical profiles of perfusion, morphology, and microstructure. Linear models compared regional CBF in patients with controls and related alterations to morphological and microstructural metrics. We further probed interregional vascular networks in TLE, using graph theoretical CBF covariance analysis. The effects of disease duration were explored to better understand the progressive changes in perfusion. We assessed the utility of perfusion in separating patients with TLE from controls using supervised machine learning., Results: Compared with control participants (n = 38; mean ± SD age 34.8 ± 9.3 years; 20 females), patients with TLE (n = 24; mean ± SD age 35.8 ± 10.6 years; 12 females) showed widespread CBF reductions predominantly in fronto-temporal regions (Cohen d -0.69, 95% CI -1.21 to -0.16), consistent in a subgroup of patients who remained seizure-free after surgical resection of the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partially constrained by gray and white matter changes (8.11% reduction in Cohen d ) and topologically segregated from whole-brain perfusion networks (area under the curve -0.17, p < 0.05). Negative effects of progressive disease duration further targeted regional CBF profiles in patients ( r = -0.54, 95% CI -0.77 to -0.16). Perfusion-derived classifiers discriminated patients from controls with high accuracy (71% [70%-82%]). Findings were robust when controlling for several methodological confounds., Discussion: Our multimodal findings provide insights into vascular contributions to TLE pathophysiology affecting and extending beyond mesiotemporal structures and highlight their clinical potential in epilepsy diagnosis. As our work was cross-sectional and based on a single site, it motivates future longitudinal studies to confirm progressive effects, ideally in a multicentric setting.
- Published
- 2024
- Full Text
- View/download PDF
17. Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain.
- Author
-
Eichert N, DeKraker J, Howard AFD, Huszar IN, Zhu S, Sallet J, Miller KL, Mars RB, Jbabdi S, and Bernhardt BC
- Subjects
- Animals, Humans, Male, Female, Macaca, Magnetic Resonance Imaging methods, Primates physiology, Primates anatomy & histology, Adult, Nerve Net physiology, Nerve Net diagnostic imaging, Nerve Net anatomy & histology, Cerebral Cortex physiology, Cerebral Cortex diagnostic imaging, Cerebral Cortex anatomy & histology, Neural Pathways physiology, Neural Pathways anatomy & histology, Macaca mulatta, Hippocampus physiology, Hippocampus anatomy & histology, Hippocampus diagnostic imaging, Biological Evolution
- Abstract
While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
18. Connectome reorganization associated with temporal lobe pathology and its surgical resection.
- Author
-
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, and Bernhardt BC
- Subjects
- Humans, Female, Male, Adult, Middle Aged, Young Adult, Diffusion Tensor Imaging, Nerve Net diagnostic imaging, Nerve Net pathology, Drug Resistant Epilepsy surgery, Drug Resistant Epilepsy diagnostic imaging, Drug Resistant Epilepsy physiopathology, Drug Resistant Epilepsy pathology, Connectome, Epilepsy, Temporal Lobe surgery, Epilepsy, Temporal Lobe physiopathology, Epilepsy, Temporal Lobe diagnostic imaging, Epilepsy, Temporal Lobe pathology, Temporal Lobe pathology, Temporal Lobe surgery, Temporal Lobe diagnostic imaging, Anterior Temporal Lobectomy methods
- Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
19. Cognitive control training with domain-general response inhibition does not change children's brains or behavior.
- Author
-
Ganesan K, Thompson A, Smid CR, Cañigueral R, Li Y, Revill G, Puetz V, Bernhardt BC, Dosenbach NUF, Kievit R, and Steinbeis N
- Subjects
- Humans, Child, Male, Female, Adolescent, Decision Making physiology, Executive Function physiology, Child Behavior physiology, Inhibition, Psychological, Brain physiology, Cognition physiology
- Abstract
Cognitive control is required to organize thoughts and actions and is critical for the pursuit of long-term goals. Childhood cognitive control relates to other domains of cognitive functioning and predicts later-life success and well-being. In this study, we used a randomized controlled trial to test whether cognitive control can be improved through a pre-registered 8-week intervention in 235 children aged 6-13 years targeting response inhibition and whether this leads to changes in multiple behavioral and neural outcomes compared to a response speed training. We show long-lasting improvements of closely related measures of cognitive control at the 1-year follow-up; however, training had no impact on any behavioral outcomes (decision-making, academic achievement, mental health, fluid reasoning and creativity) or neural outcomes (task-dependent and intrinsic brain function and gray and white matter structure). Bayesian analyses provide strong evidence of absent training effects. We conclude that targeted training of response inhibition does little to change children's brains or their behavior., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
20. Adolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling.
- Author
-
Saberi A, Wischnewski KJ, Jung K, Lotter LD, Schaare HL, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Poustka L, Hohmann S, Holz N, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Paus T, Dukart J, Bernhardt BC, Popovych OV, Eickhoff SB, and Valk SL
- Abstract
The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level., Competing Interests: Disclosures Dr Banaschewski served in an advisory or consultancy role for eye level, Infectopharm, Medice, Neurim Pharmaceuticals, Oberberg GmbH and Takeda. He received conference support or speaker’s fee by Janssen, Medice and Takeda. He received royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press. The present work is unrelated to the above grants and relationships. Dr Barker has received honoraria from General Electric Healthcare for teaching on scanner programming courses. Dr Poustka served in an advisory or consultancy role for Roche and Viforpharm and received speaker’s fees from Shire. She received royalties from Hogrefe, Kohlhammer and Schattauer. The present work is unrelated to the above grants and relationships. The other authors report no biomedical financial interests or potential conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
21. Tau follows principal axes of functional and structural brain organization in Alzheimer's disease.
- Author
-
Ottoy J, Kang MS, Tan JXM, Boone L, Vos de Wael R, Park BY, Bezgin G, Lussier FZ, Pascoal TA, Rahmouni N, Stevenson J, Fernandez Arias J, Therriault J, Hong SJ, Stefanovic B, McLaurin J, Soucy JP, Gauthier S, Bernhardt BC, Black SE, Rosa-Neto P, and Goubran M
- Subjects
- Humans, Male, Female, Aged, Microglia metabolism, Microglia pathology, Aged, 80 and over, Cognitive Dysfunction metabolism, Cognitive Dysfunction pathology, Cognitive Dysfunction diagnostic imaging, Middle Aged, Nerve Net metabolism, Nerve Net pathology, Nerve Net diagnostic imaging, Brain Mapping methods, Alzheimer Disease metabolism, Alzheimer Disease pathology, Alzheimer Disease diagnostic imaging, tau Proteins metabolism, Brain metabolism, Brain diagnostic imaging, Brain pathology, Magnetic Resonance Imaging
- Abstract
Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
22. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge.
- Author
-
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, and Jefferies E
- Subjects
- Humans, Male, Female, Adult, Magnetic Resonance Imaging, Attention physiology, Young Adult, Default Mode Network physiology, Default Mode Network diagnostic imaging, Memory, Long-Term physiology, Brain Mapping methods, Parietal Lobe physiology, Memory, Short-Term physiology, Nerve Net physiology, Nerve Net diagnostic imaging, Brain physiology
- Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior., (Copyright © 2024 Wang et al.)
- Published
- 2024
- Full Text
- View/download PDF
23. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox.
- Author
-
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, and Park BY
- Subjects
- Humans, Magnetic Resonance Imaging methods, Brain diagnostic imaging, Brain pathology, Multimodal Imaging, Image Processing, Computer-Assisted methods, Autism Spectrum Disorder diagnostic imaging, Autism Spectrum Disorder pathology, Connectome
- Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT., Competing Interests: Declaration of competing interest Bo-yong Park is an Associate Editor for NeuroImage but was not involved in the handling or review process of this manuscript., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
24. Atypical connectome topography and signal flow in temporal lobe epilepsy.
- Author
-
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, and Bernhardt BC
- Subjects
- Humans, Female, Male, Adult, Middle Aged, Magnetic Resonance Imaging, Young Adult, Brain diagnostic imaging, Brain physiopathology, Brain pathology, Cohort Studies, Nerve Net diagnostic imaging, Nerve Net physiopathology, Nerve Net pathology, Epilepsy, Temporal Lobe physiopathology, Epilepsy, Temporal Lobe diagnostic imaging, Epilepsy, Temporal Lobe pathology, Connectome
- Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment., Competing Interests: Declaration of Competing Interest The authors report no competing interests., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
25. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community.
- Author
-
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, and Bernhardt BC
- Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
26. ILAE neuroimaging task force highlight: Subcortical laminar heterotopia.
- Author
-
Kasper BS, Archer J, Bernhardt BC, Caciagli L, Cendes F, Chinvarun Y, Concha L, Federico P, Gaillard W, Kobayashi E, Ogbole G, Vaudano AE, Wang I, Wang S, Winston GP, and Rampp S
- Subjects
- Humans, Cerebral Cortex pathology, Neuroimaging, Magnetic Resonance Imaging, Classical Lissencephalies and Subcortical Band Heterotopias diagnostic imaging, Epilepsy etiology
- Abstract
The ILAE Neuroimaging Task Force publishes educational case reports that highlight basic aspects of neuroimaging in epilepsy consistent with the ILAE's educational mission. Subcortical laminar heterotopia, also known as subcortical band heterotopia (SBH) or "double cortex," is an intriguing and rare congenital malformation of cortical development. SBH lesions are part of a continuum best designated as agyria-pachygyria-band-spectrum. The malformation is associated with epilepsy that is often refractory, as well as variable degrees of developmental delay. Moreover, in an increasing proportion of cases, a distinct molecular-genetic background can be found. Diagnosing SBH can be a major challenge for many reasons, including more subtle lesions, and "non-classic" or unusual MRI-appearances. By presenting an illustrative case, we address the challenges and needs of diagnosing and treating SBH patients in epilepsy, especially the value of high-resolution imaging and specialized MRI-protocols., (© 2024 The Authors. Epileptic Disorders published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.)
- Published
- 2024
- Full Text
- View/download PDF
27. A WORLDWIDE ENIGMA STUDY ON EPILEPSY-RELATED GRAY AND WHITE MATTER COMPROMISE ACROSS THE ADULT LIFESPAN.
- Author
-
Chen J, Ngo A, Rodríguez-Cruces R, Royer J, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Alvim MKM, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp B, Domin M, von Podewils F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, Bender B, O'Brien TJ, Sinclair B, Vivash L, Kwan P, Desmond PM, Lui E, Duma GM, Bonanni P, Ballerini A, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Rüber T, Bauer T, Weber B, Caldairou B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Pardoe H, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Arienzo D, Vos SB, Ryten M, Taylor PN, Duncan JS, Whelan CD, Galovic M, Winston GP, Thomopoulos SI, Thompson PM, Sisodiya SM, Labate A, McDonald CR, Caciagli L, Bernasconi N, Bernasconi A, Larivière S, Schrader D, and Bernhardt BC
- Abstract
Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments., Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves., Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions., Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.
- Published
- 2024
- Full Text
- View/download PDF
28. Whole-brain structural connectome asymmetry in autism.
- Author
-
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, and Park BY
- Subjects
- Humans, Magnetic Resonance Imaging methods, Brain diagnostic imaging, Brain pathology, Autistic Disorder diagnostic imaging, Autism Spectrum Disorder diagnostic imaging, Autism Spectrum Disorder pathology, Connectome
- Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings., Competing Interests: Declaration of competing interest All authors declare no conflicts of interest., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
29. Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption.
- Author
-
Stasenko A, Lin C, Bonilha L, Bernhardt BC, and McDonald CR
- Subjects
- Humans, Diffusion Tensor Imaging methods, Brain diagnostic imaging, Brain pathology, Magnetic Resonance Imaging methods, White Matter, Epilepsy pathology
- Abstract
Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
30. Region-specific MRI predictors of surgical outcome in temporal lobe epilepsy.
- Author
-
Fadaie F, Caldairou B, Gill RS, Foit NA, Hall JA, Bernhardt BC, Bernasconi N, and Bernasconi A
- Subjects
- Humans, Female, Male, Adult, Treatment Outcome, Middle Aged, Young Adult, Amygdala diagnostic imaging, Amygdala surgery, Amygdala pathology, Anterior Temporal Lobectomy methods, Hippocampus diagnostic imaging, Hippocampus pathology, Hippocampus surgery, Drug Resistant Epilepsy surgery, Drug Resistant Epilepsy diagnostic imaging, Drug Resistant Epilepsy pathology, Brain diagnostic imaging, Brain surgery, Brain pathology, Epilepsy, Temporal Lobe surgery, Epilepsy, Temporal Lobe diagnostic imaging, Epilepsy, Temporal Lobe pathology, Magnetic Resonance Imaging methods
- Abstract
Objective: In drug-resistant temporal lobe epilepsy (TLE), it is not well-established in how far surgery should target morphological anomalies to achieve seizure freedom. Here, we assessed interactions between structural brain compromise and surgery to identify region-specific predictors of seizure outcome., Methods: We obtained pre- and post-operative 3D T1-weighted MRI in 55 TLE patients who underwent selective amygdalo-hippocampectomy (SAH) or anterior temporal lobectomy (ATL) and 40 age and sex-matched healthy subjects. We measured surface-based morphological alterations of the mesiotemporal lobe structures (hippocampus, amygdala, entorhinal and piriform cortices), the neocortex and the thalamus on both pre- and post-operative MRI. Using precise co-registration, in each patient we mapped the surgical cavity onto the MRI acquired before surgery, thereby quantifying the amount of pathological tissue resected; these features, together with the preoperative morphometric data, served as input to a supervised classification algorithm for postsurgical outcome prediction., Results: On pre-operative MRI, patients who became seizure-free (TLE-SF) presented with severe ipsilateral amygdalar and hippocampal atrophy, while not seizure-free patients (TLE-NSF) displayed amygdalar hypertrophy. Stratifying patients based on the surgical approach, post-operative MRI showed similar patterns of mesiotemporal and thalamic changes, but divergent neocortical thinning affecting the parieto-temporo-occipital regions following ATL and the frontal lobes after SAH. Irrespective of the surgical approach, hippocampal atrophy on pre-operative MRI and its extent of resection were the most predictive features of seizure-freedom in 89% of patients (selected 100% across validations)., Significance: Our study indicates a critical role of the extent of resection of MRI-derived hippocampal morphological anomalies on seizure outcome. Precise pre-operative quantification of the mesiotemporal lobe provides non-invasive prognostics for individualized surgery., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
31. Connectome-wide structure-function coupling models implicate polysynaptic alterations in autism.
- Author
-
Park BY, Benkarim O, Weber CF, Kebets V, Fett S, Yoo S, Martino AD, Milham MP, Misic B, Valk SL, Hong SJ, and Bernhardt BC
- Subjects
- Humans, Brain, Magnetic Resonance Imaging methods, Brain Mapping methods, Autistic Disorder diagnostic imaging, Connectome methods, Autism Spectrum Disorder
- Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms., Competing Interests: Declaration of Competing Interest All authors declare no conflicts of interest., (Copyright © 2023. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
32. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts.
- Author
-
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, and Tardif CL
- Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship., Competing Interests: Competing Interests: The authors have declared that no competing interests exist., (© 2023 Massachusetts Institute of Technology.)
- Published
- 2023
- Full Text
- View/download PDF
33. Evaluation of surface-based hippocampal registration using ground-truth subfield definitions.
- Author
-
DeKraker J, Palomero-Gallagher N, Kedo O, Ladbon-Bernasconi N, Muenzing SEA, Axer M, Amunts K, Khan AR, Bernhardt BC, and Evans AC
- Subjects
- Temporal Lobe, Histological Techniques, Magnetic Resonance Imaging methods, Hippocampus diagnostic imaging, Hippocampus pathology
- Abstract
The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches., Competing Interests: JD, NP, OK, NL, SM, MA, KA, AK, BB, AE No competing interests declared, (© 2023, DeKraker et al.)
- Published
- 2023
- Full Text
- View/download PDF
34. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity.
- Author
-
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, and Valk SL
- Subjects
- Animals, Humans, Macaca, Cerebral Cortex, Neocortex
- Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Saberi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
35. Diverging asymmetry of intrinsic functional organization in autism.
- Author
-
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, and Valk SL
- Subjects
- Humans, Magnetic Resonance Imaging, Brain, Functional Laterality physiology, Brain Mapping, Autistic Disorder, Connectome, Autism Spectrum Disorder
- Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
36. Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex.
- Author
-
Leech R, Vos De Wael R, Váša F, Xu T, Austin Benn R, Scholz R, Braga RM, Milham MP, Royer J, Bernhardt BC, Jones EJH, Jefferies E, Margulies DS, and Smallwood J
- Subjects
- Spatial Analysis, Cognition, Sensorimotor Cortex
- Abstract
Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
37. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy.
- Author
-
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, and Bernhardt BC
- Subjects
- Humans, Quality of Life, Brain pathology, Magnetic Resonance Imaging, Brain Mapping, Epilepsy, Temporal Lobe pathology
- Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
38. Magnetic resonance-guided laser interstitial thermal therapy for drug-resistant epilepsy: A systematic review and individual participant data meta-analysis.
- Author
-
Chen JS, Lamoureux AA, Shlobin NA, Elkaim LM, Wang A, Ibrahim GM, Obaid S, Harroud A, Guadagno E, Dimentberg E, Bouthillier A, Bernhardt BC, Nguyen DK, Fallah A, and Weil AG
- Subjects
- Humans, Female, Child, Adolescent, Young Adult, Adult, Middle Aged, Male, Treatment Outcome, Magnetic Resonance Imaging methods, Seizures surgery, Magnetic Resonance Spectroscopy, Lasers, Retrospective Studies, Laser Therapy methods, Drug Resistant Epilepsy diagnostic imaging, Drug Resistant Epilepsy surgery
- Abstract
Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a popular minimally invasive alternative to open resective surgery for drug-resistant epilepsy (DRE). We sought to perform a systematic review and individual participant data meta-analysis to identify independent predictors of seizure outcome and complications following MRgLITT for DRE. Eleven databases were searched from January 1, 2010 to February 6, 2021 using the terms "MR-guided ablation therapy" and "epilepsy". Multivariable mixed-effects Cox and logistic regression identified predictors of time to seizure recurrence, seizure freedom, operative complications, and postoperative neurological deficits. From 8705 citations, 46 studies reporting on 450 MRgLITT DRE patients (mean age = 29.5 ± 18.1 years, 49.6% female) were included. Median postoperative seizure freedom and follow-up duration were 15.5 and 19.0 months, respectively. Overall, 240 (57.8%) of 415 patients (excluding palliative corpus callosotomy) were seizure-free at last follow-up. Generalized seizure semiology (hazard ratio [HR] = 1.78, p = .020) and nonlesional magnetic resonance imaging (MRI) findings (HR = 1.50, p = .032) independently predicted shorter time to seizure recurrence. Cerebral cavernous malformation (CCM; odds ratio [OR] = 7.97, p < .001) and mesial temporal sclerosis/atrophy (MTS/A; OR = 2.21, p = .011) were independently associated with greater odds of seizure freedom at last follow-up. Operative complications occurred in 28 (8.5%) of 330 patients and were independently associated with extratemporal ablations (OR = 5.40, p = .012) and nonlesional MRI studies (OR = 3.25, p = .017). Postoperative neurological deficits were observed in 53 (15.1%) of 352 patients and were independently predicted by hypothalamic hamartoma etiology (OR = 5.93, p = .006) and invasive electroencephalographic monitoring (OR = 4.83, p = .003). Overall, MRgLITT is particularly effective in treating patients with well-circumscribed lesional DRE, such as CCM and MTS/A, but less effective in nonlesional cases or lesional cases with a more diffuse epileptogenic network associated with generalized seizures. This study identifies independent predictors of seizure freedom and complications following MRgLITT that may help further guide patient selection., (© 2023 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.)
- Published
- 2023
- Full Text
- View/download PDF
39. Cerebral chemoarchitecture shares organizational traits with brain structure and function.
- Author
-
Hänisch B, Hansen JY, Bernhardt BC, Eickhoff SB, Dukart J, Misic B, and Valk SL
- Subjects
- Humans, Brain Mapping, Positron-Emission Tomography, Diffusion Magnetic Resonance Imaging, Magnetic Resonance Imaging methods, Brain diagnostic imaging
- Abstract
Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and receptor molecules, is a relevant component of structure-function relationships in the human brain. Here, we studied the organization of the receptome, a measure of interareal chemoarchitectural similarity, derived from positron-emission tomography imaging studies of 19 different neurotransmitter transporters and receptors. Nonlinear dimensionality reduction revealed three main spatial gradients of cortical chemoarchitectural similarity - a centro-temporal gradient, an occipito-frontal gradient, and a temporo-occipital gradient. In subcortical nuclei, chemoarchitectural similarity distinguished functional communities and delineated a striato-thalamic axis. Overall, the cortical receptome shared key organizational traits with functional and structural brain anatomy, with node-level correspondence to functional, microstructural, and diffusion MRI-based measures decreasing along a primary-to-transmodal axis. Relative to primary and paralimbic regions, unimodal and heteromodal regions showed higher receptomic diversification, possibly supporting functional flexibility., Competing Interests: BH, JH, BB, SE, JD, BM, SV No competing interests declared, (© 2023, Hänisch et al.)
- Published
- 2023
- Full Text
- View/download PDF
40. Atypical functional connectivity hierarchy in Rolandic epilepsy.
- Author
-
Zhang Q, Li J, He Y, Yang F, Xu Q, Larivière S, Bernhardt BC, Liao W, Lu G, and Zhang Z
- Subjects
- Child, Humans, Brain diagnostic imaging, Cognition, Seizures, Epilepsy, Rolandic
- Abstract
Functional connectivity hierarchy is an important principle in the process of brain functional organization and an important feature reflecting brain development. However, atypical brain network hierarchy organization in Rolandic epilepsy have not been systematically investigated. We examined connectivity alteration with age and its relation to epileptic incidence, cognition, or underlying genetic factors in 162 cases of Rolandic epilepsy and 117 typically developing children, by measuring fMRI multi-axis functional connectivity gradients. Rolandic epilepsy is characterized by contracting and slowing expansion of the functional connectivity gradients, highlighting the atypical age-related change of the connectivity hierarchy in segregation properties. The gradient alterations are relevant to seizure incidence, cognition, and connectivity deficit, and development-associated genetic basis. Collectively, our approach provides converging evidence for atypical connectivity hierarchy as a system-level substrate of Rolandic epilepsy, suggesting this is a disorder of information processing across multiple functional domains, and established a framework for large-scale brain hierarchical research., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
41. Functional and microstructural plasticity following social and interoceptive mental training.
- Author
-
Valk SL, Kanske P, Park BY, Hong SJ, Böckler A, Trautwein FM, Bernhardt BC, and Singer T
- Subjects
- Adult, Humans, Female, Emotions, Learning, Empathy, Brain diagnostic imaging, Cognition
- Abstract
The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills., Competing Interests: SV, PK, BP, SH, AB, FT, BB, TS No competing interests declared, (© 2023, Valk et al.)
- Published
- 2023
- Full Text
- View/download PDF
42. Atypical structural connectome asymmetry and associations with network communication in autism spectrum disorder.
- Author
-
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, and Park BY
- Subjects
- Humans, Magnetic Resonance Imaging methods, Communication, Autism Spectrum Disorder diagnostic imaging, Connectome, Autistic Disorder
- Abstract
Autism spectrum disorder is a common neurodevelopmental condition showing connectome disorganization in sensory and transmodal cortices. However, alterations in the inter-hemispheric asymmetry of structural connectome are remained to be investigated. Here, we studied structural connectome asymmetry in individuals with autism using dimensionality reduction techniques and assessed its topological underpinnings by associating with network communication measures. We found that the sensory and heteromodal association regions showed significant between-group differences in inter-hemispheric asymmetry between individuals with autism and neurotypical controls. In addition, the network communication ability was particularly altered between visual and limbic areas. Our findings provide insights for understanding structural connectome alteration in autism and its topological underpinnings.Clinical Relevance- This study provides insights into the understanding of atypical macroscale structural connectome organization in individuals with autism.
- Published
- 2023
- Full Text
- View/download PDF
43. Comparison between gradients and parcellations for functional connectivity prediction of behavior.
- Author
-
Kong R, Tan YR, Wulan N, Ooi LQR, Farahibozorg SR, Harrison S, Bijsterbosch JD, Bernhardt BC, Eickhoff S, and Thomas Yeo BT
- Subjects
- Adolescent, Humans, Algorithms, Brain diagnostic imaging, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, Connectome methods
- Abstract
Resting-state functional connectivity (RSFC) is widely used to predict behavioral measures. To predict behavioral measures, representing RSFC with parcellations and gradients are the two most popular approaches. Here, we compare parcellation and gradient approaches for RSFC-based prediction of a broad range of behavioral measures in the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. Among the parcellation approaches, we consider group-average "hard" parcellations (Schaefer et al., 2018), individual-specific "hard" parcellations (Kong et al., 2021a), and an individual-specific "soft" parcellation (spatial independent component analysis with dual regression; Beckmann et al., 2009). For gradient approaches, we consider the well-known principal gradients (Margulies et al., 2016) and the local gradient approach that detects local RSFC changes (Laumann et al., 2015). Across two regression algorithms, individual-specific hard-parcellation performs the best in the HCP dataset, while the principal gradients, spatial independent component analysis and group-average "hard" parcellations exhibit similar performance. On the other hand, principal gradients and all parcellation approaches perform similarly in the ABCD dataset. Across both datasets, local gradients perform the worst. Finally, we find that the principal gradient approach requires at least 40 to 60 gradients to perform as well as parcellation approaches. While most principal gradient studies utilize a single gradient, our results suggest that incorporating higher order gradients can provide significant behaviorally relevant information. Future work will consider the inclusion of additional parcellation and gradient approaches for comparison., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Inc.)
- Published
- 2023
- Full Text
- View/download PDF
44. Atypical connectome topography and signal flow in temporal lobe epilepsy.
- Author
-
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, and Bernhardt BC
- Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
- Published
- 2023
- Full Text
- View/download PDF
45. Assortative mixing in micro-architecturally annotated brain connectomes.
- Author
-
Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, and Misic B
- Subjects
- Brain diagnostic imaging, Brain physiology, Neurons physiology, Neural Pathways physiology, Connectome methods
- Abstract
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
46. Physical distance to sensory-motor landmarks predicts language function.
- Author
-
Wang X, Krieger-Redwood K, Zhang M, Cui Z, Wang X, Karapanagiotidis T, Du Y, Leech R, Bernhardt BC, Margulies DS, Smallwood J, and Jefferies E
- Subjects
- Humans, Physical Distancing, Magnetic Resonance Imaging methods, Language, Brain physiology, Brain Mapping methods
- Abstract
Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
47. Atypical intrinsic neural timescales in temporal lobe epilepsy.
- Author
-
Xie K, Royer J, Lariviere S, Rodriguez-Cruces R, de Wael RV, Park BY, Auer H, Tavakol S, DeKraker J, Abdallah C, Caciagli L, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Concha L, and Bernhardt BC
- Subjects
- Adult, Humans, Magnetic Resonance Imaging methods, Hippocampus diagnostic imaging, Temporal Lobe, Seizures, Epilepsy, Temporal Lobe diagnosis
- Abstract
Objective: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT., Methods: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset., Results: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds., Significance: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility., (© 2023 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.)
- Published
- 2023
- Full Text
- View/download PDF
48. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy.
- Author
-
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, and Bernhardt BC
- Subjects
- Adult, Humans, Memory, Short-Term, Brain, Semantics, Neuropsychological Tests, Magnetic Resonance Imaging, Epilepsy, Temporal Lobe, Epilepsy, Frontal Lobe psychology
- Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
49. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain.
- Author
-
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, and Bernhardt BC
- Subjects
- Humans, Magnetic Resonance Imaging methods, Brain Mapping methods, Cognition, Emotions, Neural Pathways, Neocortex, Connectome methods
- Abstract
Background: Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry., Methods: We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections., Results: Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture., Conclusions: By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
50. A convergent structure-function substrate of cognitive imbalances in autism.
- Author
-
Hong SJ, Mottron L, Park BY, Benkarim O, Valk SL, Paquola C, Larivière S, Vos de Wael R, Degré-Pelletier J, Soulieres I, Ramphal B, Margolis A, Milham M, Di Martino A, and Bernhardt BC
- Subjects
- Humans, Brain, Intelligence, Cognition, Autism Spectrum Disorder, Autistic Disorder complications
- Abstract
Background: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain., Methods: To study brain substrates underlying cognitive imbalance in ASD, we capitalized categorical and dimensional IQ profiling as well as multimodal neuroimaging., Results: IQ analyses revealed a marked verbal to nonverbal IQ imbalance in ASD across 2 datasets (Dataset-1: 155 ASD, 151 controls; Dataset-2: 270 ASD, 490 controls). Neuroimaging analysis in Dataset-1 revealed a structure-function substrate of cognitive imbalance, characterized by atypical cortical thickening and altered functional integration of language networks alongside sensory and higher cognitive areas., Conclusion: Although verbal and nonverbal intelligence have been considered as specifiers unrelated to autism diagnosis, our results indicate that intelligence disparities are accentuated in ASD and reflected by a consistent structure-function substrate affecting multiple brain networks. Our findings motivate the incorporation of cognitive imbalances in future autism research, which may help to parse the phenotypic heterogeneity and inform intervention-oriented subtyping in ASD., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.