1. Removal of Pb(II) from Aqueous Solution and Adsorption Kinetics of Corn Stalk Biochar
- Author
-
Wenling Yang, Chaoyang Lu, Bo Liang, Chaohui Yin, Gao Lei, Baitao Wang, Xiaokai Zhou, Jing Zhen, Shujing Quan, and Yanyan Jing
- Subjects
biochar ,Pb(II) removal ,adsorption ability ,kinetic analysis ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
In this work, the Pb adsorption and removal ability of biochar from simulated Pb(II)-contaminated wastewater, adsorption isotherms, kinetics, and thermodynamics were studied. Adsorption characteristics of biochar on Pb(II) were analyzed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS). The influence of the pH of the solution, the contact time, and the biochar dose on the removal of Pb(II) were investigated by single-factor design and response surface analysis. With the increase in biochar dose from 2 g/L to 4 g/L in wastewater, the Pb(II) amount adsorbed on biochar reduced from 21.3 mg/g to 17.5 mg/g. A weakly acidic environment was more conducive to the ligand exchange between Pb(II) ions and biochar. Pb(II) adsorption kinetics of biochar showed that the Pseudo-first-order model was more suitable than other employed models to describe the adsorption process. During the isothermal adsorption process, Langmuir and Freundlich’s isotherms fitted the adsorption data very well (R2 > 96%). The Pb (II) adsorption onto biochar was spontaneous in the specified temperature range (298–318 K) and the process was exothermic. Simultaneously, the optimal conditions were a pH of 5, a contact time of 255 min, and a biochar dose of 3 g/L, under which the maximum predicted Pb(II) removal efficiency was 91.52%.
- Published
- 2023
- Full Text
- View/download PDF