1. Mean crossover functions for uniaxial 3D ising-like systems
- Author
-
GARRABOS, Yves, BERVILLIER, Claude, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), and Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
and percolation studies of phase transitions ,Statistical Mechanics (cond-mat.stat-mech) ,fractal ,FOS: Physical sciences ,Renormalization-group ,Critical point phenomena ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Renormalization group methods ,Condensed Matter - Statistical Mechanics ,Thermal properties of liquids - Abstract
We give simple expressions for the mean of the max and min bounds of the critical-to-classical crossover functions previously calculated [Bagnuls and Bervillier, Phys. Rev. E 65, 066132 (2002)] within the massive renormalization scheme of the F 4 d (n) model in three dimensions (d = 3) and scalar order parameter (n = 1) of the Ising-like universality class. Our main motivation is to get efficient theoretical expressions to coherently account for many measurements performed in systems where the approach to the critical point is limited but yield data which are still reproducible by the F 4 d (n) model (like in the subclass of one-component fluids).
- Published
- 2006
- Full Text
- View/download PDF