Arrowsmith-Kron G, Athanasakis-Kaklamanakis M, Au M, Ballof J, Berger R, Borschevsky A, Breier AA, Buchinger F, Budker D, Caldwell L, Charles C, Dattani N, de Groote RP, DeMille D, Dickel T, Dobaczewski J, Düllmann CE, Eliav E, Engel J, Fan M, Flambaum V, Flanagan KT, Gaiser AN, Garcia Ruiz RF, Gaul K, Giesen TF, Ginges JSM, Gottberg A, Gwinner G, Heinke R, Hoekstra S, Holt JD, Hutzler NR, Jayich A, Karthein J, Leach KG, Madison KW, Malbrunot-Ettenauer S, Miyagi T, Moore ID, Moroch S, Navratil P, Nazarewicz W, Neyens G, Norrgard EB, Nusgart N, Pašteka LF, N Petrov A, Plaß WR, Ready RA, Pascal Reiter M, Reponen M, Rothe S, Safronova MS, Scheidenerger C, Shindler A, Singh JT, Skripnikov LV, Titov AV, Udrescu SM, Wilkins SG, and Yang X
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field., (© 2024 IOP Publishing Ltd.)