5 results on '"Andrew J. Schroeder"'
Search Results
2. Author Correction: The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data
- Author
-
Sarah B. Reiff, Andrew J. Schroeder, Koray Kırlı, Andrea Cosolo, Clara Bakker, Luisa Mercado, Soohyun Lee, Alexander D. Veit, Alexander K. Balashov, Carl Vitzthum, William Ronchetti, Kent M. Pitman, Jeremy Johnson, Shannon R. Ehmsen, Peter Kerpedjiev, Nezar Abdennur, Maxim Imakaev, Serkan Utku Öztürk, Uğur Çamoğlu, Leonid A. Mirny, Nils Gehlenborg, Burak H. Alver, and Peter J. Park
- Subjects
Science - Published
- 2022
- Full Text
- View/download PDF
3. Insights into social insects from the genome of the honeybee Apis mellifera
- Author
-
George M. Weinstock, Andrew K. Jones, Katherine A Aronstein, Irene Gattermeier, Kiyoshi Kimura, Susan E. Fahrbach, Laura I. Decanini, Christina M. Grozinger, Evgeny M. Zdobnov, Susan J. Brown, Jonathan V. Sweedler, Kazutoyo Osoegawa, Christian A. Ross, Joseph J. Gillespie, Ngoc Nguyen, Geert Baggerman, Frank Hauser, Dan Graur, Michelle M. Elekonich, Alison R. Mercer, Amanda F. Svatek, Jean Marie Cornuet, Cornelis J. P. Grimmelikhuijzen, Aleksandar Milosavljevic, Anand Venkatraman, Andrew J. Schroeder, Huaiyang Jiang, Michael R. Kanost, Justin T. Reese, Margaret Morgan, Tomoko Fujiyuki, Kim C. Worley, Susanta K. Behura, Jun Kawai, Robert Kucharski, Gildardo Aquino-Perez, Miguel Corona, Diana E. Wheeler, Kathryn S. Campbell, William M. Gelbart, Amy L. Toth, Yanping Chen, Mira Cohen, Noam Kaplan, Michihira Tagami, Miguel A. Peinado, Peter K. Dearden, Glenford Savery, Liliane Schoofs, Takeo Kubo, Giuseppe Cazzamali, Sylvain Forêt, Thomas C. Newman, Ross Overbeek, Piero Carninci, Ryszard Maleszka, Barbara J. Ruef, Michal Linial, Alexandre S. Cristino, Mary A. Schuler, Huyen Dinh, J. Troy Littleton, Manoj P. Samanta, Waraporn Tongprasit, L. Sian Grametes, Eran Elhaik, Jean-Luc Imler, Zhen Zou, Rodrigo A. Velarde, Tanja Gempe, Dorothea Eisenhardt, Juan Manuel Anzola, Graham J. Thompson, Aaron J. Mackey, René Feyereisen, Mrcia M.G. Bitondi, Lora Lewis, Guy Bloch, Richard A. Gibbs, Jane Peterson, Jay D. Evans, Robert E. Page, Amanda B. Hummon, Viktor Stolc, Donna M. Muzny, Yair Shemesh, Francis M. F. Nunes, Dawn Lopez, Judith H. Willis, Martin Hasselmann, Mark S. Guyer, John G. Oakeshott, Pinglei Zhou, Eriko Kage, Dominique Vautrin, Kevin J. Hackett, Sandra L. Lee, Clay Davis, Christine Emore, Gene E. Robinson, Alexandre Souvorov, T.A. Richmond, Rachel Thorn, Jurgen Huybrechts, Elad B. Rubin, Craig Mizzen, Deborah R. Smith, Walter S. Sheppard, Takekazu Kunieda, Adam Felsenfeld, Bingshan Li, Jeffrey G. Reid, La Ronda Jackson, Jamie J. Cannone, Robin R. Gutell, Jireh Santibanez, Megan J. Wilson, David B. Sattelle, Azusa Kamikouchi, George Miner, Hideaki Takeuchi, Geoffrey Okwuonu, Jennifer Hume, Jonathan Miller, Kazuaki Ohashi, Angela Jovilet, Yoshihide Hayashizaki, Joseph Chacko, Paul Kitts, Erica Sodergren, Charles Hetru, Andrew V. Suarez, Brian P. Lazzaro, Susan E. St. Pierre, Evy Vierstraete, Haobo Jiang, Sandra Hines, Teresa D. Shippy, Greg J. Hunt, Peter Kosarev, Dan Hultmark, Stefan Albert, Susan M. Russo, Chung Li Shu, Michel Solignac, H. Michael G. Lattorff, Xu Ling, Grard Leboulle, Miklós Csürös, Neil D. Tsutsui, Lynne V. Nazareth, Ying Wang, Florence Mougel, Beverly B. Matthews, Kevin L. Childs, Rita A. Wright, Hugh M. Robertson, Lan Zhang, Peter Verleyen, Daniel B. Weaver, Christie Kovar, Chikatoshi Kai, Charles W. Whitfield, Madeline A. Crosby, Natalia V. Milshina, Reed M. Johnson, Michael A. Ewing, Peter L. Jones, Sandra L. Rodriguez-Zas, Michael B. Eisen, Klaus Hartfelder, Karl H.J. Gordon, W. Augustine Dunn, Ling Ling Pu, M. Monnerot, Stephen Richards, Richa Agarwala, Judith Hernandez, Pieter J. de Jong, Michael Williamson, Marcé D. Lorenzen, Zilá Luz Paulino Simões, Mark D. Drapeau, Donna Villasana, Katarína Bíliková, J. Spencer Johnston, David I. Schlipalius, Xuehong Wei, Laurent Duret, Venky N. Iyer, Andrew G. Clark, Christine G. Elsik, Hilary Ranson, Kyle T. Beggs, Mireia Jordà, Shiro Fukuda, Seth A. Ament, Vivek Iyer, Jozef Šimúth, Stewart H. Berlocher, May R. Berenbaum, Robin F. A. Moritz, Tatsuhiko Kadowaki, Charles Claudianos, Gro V. Amdam, Yue Liu, Naoko Sakazume, Morten Schioett, Paul Havlak, Anita M. Collins, Dirk C. de Graaf, Derek Collinge, Ivica Letunic, Carlos H. Lobo, Mizue Morioka, Martin Beye, Rachel Gill, C. Michael Dickens, Daisuke Sasaki, Victor V. Solovyev, Peer Bork, Sunita Biswas, David A. Wheeler, Heidi Paul, Bioinformatique, phylogénie et génomique évolutive (BPGE), Département PEGASE [LBBE] (PEGASE), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Evolution, Génomes et Spéciation (LEGS), Centre National de la Recherche Scientifique (CNRS), and Physical and genetic mapping
- Subjects
Male ,0106 biological sciences ,Transposable element ,[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,Proteome ,Genome, Insect ,Molecular Sequence Data ,Genes, Insect ,Genomics ,Biology ,010603 evolutionary biology ,01 natural sciences ,Genome ,Article ,Evolution, Molecular ,03 medical and health sciences ,Molecular evolution ,Phylogenetics ,Animals ,Gene ,Phylogeny ,abeille domestique ,030304 developmental biology ,Whole genome sequencing ,Genetics ,Base Composition ,0303 health sciences ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Multidisciplinary ,Behavior, Animal ,Reproduction ,SOCIAL BEHAVIOR ,[SDV.BA]Life Sciences [q-bio]/Animal biology ,Immunity ,APIS MELLIFERA ,food and beverages ,Bees ,Telomere ,Physical Chromosome Mapping ,INSECTE ,Gene Expression Regulation ,DNA methylation ,DNA Transposable Elements ,Female ,GENETIQUE DES POPULATIONS ,Signal Transduction - Abstract
Ce travail résulte de la collaboration de très nombreux chercheurs. Seuls les auteurs de la rubrique Physical and Genetic Mapping sont cités explicitement.; Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A1T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A.mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A.mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement
- Published
- 2006
- Full Text
- View/download PDF
4. Genetic analysis of functional domains within the Drosophila LARK RNA-binding protein
- Author
-
F. Rob Jackson, Andrew J. Schroeder, Gerard P. McNeil, and Mary A. Roberts
- Subjects
Male ,Time Factors ,Mutant ,Amino Acid Motifs ,Immunoblotting ,Molecular Sequence Data ,Mutagenesis (molecular biology technique) ,RNA-binding protein ,Biology ,medicine.disease_cause ,Epitopes ,Sex Factors ,Genetics ,medicine ,Animals ,Drosophila Proteins ,Amino Acid Sequence ,Transgenes ,Crosses, Genetic ,Zinc finger ,Mutation ,RNA recognition motif ,Models, Genetic ,RNA-Binding Proteins ,Phenotype ,Immunohistochemistry ,Circadian Rhythm ,Protein Structure, Tertiary ,Fertility ,RNA ,Drosophila ,Female ,Function (biology) ,Research Article ,Protein Binding - Abstract
LARK is an essential Drosophila RNA-binding protein of the RNA recognition motif (RRM) class that functions during embryonic development and for the circadian regulation of adult eclosion. LARK protein contains three consensus RNA-binding domains: two RRM domains and a retroviral-type zinc finger (RTZF). To show that these three structural domains are required for function, we performed a site-directed mutagenesis of the protein. The analysis of various mutations, in vivo, indicates that the RRM domains and the RTZF are required for wild-type LARK functions. RRM1 and RRM2 are essential for viability, although interestingly either domain can suffice for this function. Remarkably, mutation of either RRM2 or the RTZF results in the same spectrum of phenotypes: mutants exhibit reduced viability, abnormal wing and mechanosensory bristle morphology, female sterility, and flightlessness. The severity of these phenotypes is similar in single mutants and double RRM2; RTZF mutants, indicating a lack of additivity for the mutations and suggesting that RRM2 and the RTZF act together, in vivo, to determine LARK function. Finally, we show that mutations in RRM1, RRM2, or the RTZF do not affect the circadian regulation of eclosion, and we discuss possible interpretations of these results. This genetic analysis demonstrates that each of the LARK structural domains functions in vivo and indicates a pleiotropic requirement for both the LARK RRM2 and RTZF domains.
- Published
- 2001
5. A Timely Expression Profile
- Author
-
F. Rob Jackson and Andrew J. Schroeder
- Subjects
Genetics ,biology ,Gene Expression Profiling ,Vertebrate ,Cell Biology ,Computational biology ,General Biochemistry, Genetics and Molecular Biology ,Molecular analysis ,Circadian Rhythm ,Expression (architecture) ,Gene Expression Regulation ,Biological Clocks ,biology.animal ,Animals ,RNA ,DNA microarray ,Animal species ,Molecular Biology ,Gene ,Oligonucleotide Array Sequence Analysis ,Developmental Biology - Abstract
Molecular genetic analysis has yielded a detailed mechanistic understanding of invertebrate and vertebrate circadian oscillators, but we still know little about how such molecular oscillators are connected to rhythmic physiological processes. Two recent papers in Cell and Neuron now address this scientific issue through the use of gene chip technology to identify clock-regulated genes in an animal species.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.