1. Nitrogen-Doped Carbon Nanotubes as a Highly Active Metal-Free Catalyst for Selective Oxidation
- Author
-
Kambiz Chizari, Ovidiu Ersen, Dominique Begin, Cuong Pham-Huu, Adrien Deneuve, David Edouard, Izabela Janowska, Ileana Florea, Yu Liu, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de physique des interfaces et des couches minces [Palaiseau] (LPICM), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Beihang University (BUAA), Laboratoire d'automatique et de génie des procédés (LAGEP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Department of Organic Chemistry, Łódź University of Technology, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Nitrogen ,General Chemical Engineering ,Catalyst support ,Inorganic chemistry ,Oxide ,02 engineering and technology ,Carbon nanotube ,010402 general chemistry ,Heterogeneous catalysis ,01 natural sciences ,7. Clean energy ,Catalyst poisoning ,Catalysis ,Substrate Specificity ,law.invention ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,law ,Environmental Chemistry ,[CHIM]Chemical Sciences ,General Materials Science ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Hydrogen Sulfide ,ComputingMilieux_MISCELLANEOUS ,Nanotubes, Carbon ,Temperature ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,General Energy ,chemistry ,Carbon nanotube supported catalyst ,0210 nano-technology ,Oxidation-Reduction ,Sulfur ,Space velocity - Abstract
Catalytic reactions are generally carried out on supported metals or oxides, which act as an active phase and require impregnation and thermal treatment steps. During tests, the metal or oxide nanoparticles could be further sintered, which would induces deactivation. Direct incorporation of the active phase into the matrix of a support could be an elegant alternative to prevent catalyst deactivation. Here, we report that nitrogen-doped carbon nanotubes (N-CNTs) can be efficiently employed as a metal-free catalyst for oxidative reactions that allow the selective transformation of the harmful, gaseous H(2)S into solid sulfur. The catalyst exhibits a high stability during the test at high space velocity. The macroscopic shaping of the catalyst on the silicon carbide foam also increases its catalytic activity by improving the contact between the reactants and the catalyst. Such macroscopic shaping allows the avoidance of problems linked with transport and handling of nanoscopic materials and also reduces the pressure drop across the catalyst bed to a large extent.
- Published
- 2012