3 results on '"Abate, Asferachew"'
Search Results
2. Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species.
- Author
-
Yohannes, Yonas, Shibistova, Olga, Abate, Asferachew, Fetene, Masresha, and Guggenberger, Georg
- Subjects
SOIL moisture ,PLANT phenology ,SOIL temperature ,SPECIES distribution ,PLANT canopies ,SOIL respiration ,CROTON (Genus) - Abstract
Abstract: Variability of soil CO
2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration. [Copyright &y& Elsevier]- Published
- 2011
- Full Text
- View/download PDF
3. Soil-plant hydrology of indigenous and exotic trees in an Ethiopian montane forest.
- Author
-
Fritzsche F, Abate A, Fetene M, Beck E, Weise S, and Guggenberger G
- Subjects
- Biological Transport, Climate, Cupressus physiology, Ethiopia, Eucalyptus physiology, Plant Roots anatomy & histology, Plant Roots physiology, Time Factors, Tracheophyta physiology, Soil analysis, Trees physiology, Water chemistry, Water metabolism
- Abstract
Fast-growing exotic trees are widely planted in the tropics to counteract deforestation; however, their patterns of water use could be detrimental to overall ecosystem productivity through their impact on ecosystem water budget. In a comparative field study on seasonal soil-plant water dynamics of two exotic species (Cupressus lusitanica Mill. and Eucalyptus globulus Labill.) and the indigenous Podocarpus falcatus (Thunb.) Mirb. in south Ethiopia, we combined a 2.5-year record for climate and soil water availability, natural-abundance oxygen isotope ratios (delta(18)O) of soil and xylem water, destructive root sampling and transpiration measurements. Soil was generally driest under C. lusitanica with its dense canopy and shallow root system, particularly following a relatively low-rainfall wet season, with the wettest soil under E. globulus. Wet season transpiration of C. lusitanica was twice that of the other species. In the dry season, P. falcatus and C. lusitanica reduced transpiration by a factor of six and two, respectively, whereas E. globulus showed a fivefold increase. In all species, there was a shift in water uptake to deeper soil layers as the dry season progressed, accompanied by relocation of live fine root biomass (LFR) of C. lusitanica and P. falcatus to deeper layers. Under P. falcatus, variability in soil matric potential, narrow delta(18)O depth gradients and high LFR indicated fast water redistribution. Subsoil water uptake was important only for E. globulus, which had low topsoil LFR and tap roots exploiting deep water. Although P. falcatus appeared better adapted to varying soil water availability than the exotic species, both conifers decreased growth substantially during dry weather. Growth of E. globulus was largely independent of topsoil water content, giving it the potential to cause substantial dry-season groundwater depletion.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.