1. Evaluation of an uncollimated printed paper transmission source used under scatter limiting conditions.
- Author
-
van Staden, J.A., du Raan, H., Lötter, M.G., Herbst, C.P., van Aswegen, A., and Rae, W.I.D.
- Subjects
SCATTERING (Physics) ,PAPER ,COLLIMATORS ,IMAGING phantoms ,SPECTRUM analysis ,MEDICAL physics ,STATISTICS ,IMAGING systems - Abstract
Abstract: Transmission sources used for image attenuation correction, allowing image quantification, are collimated to reduce scatter. We propose the same effect can be achieved for an uncollimated source by increasing source to patient distance. The aim was to compare planar image performance characteristics and absorbed doses of uncollimated and collimated radioactive printed paper transmission sources. The scatter contribution to the uncollimated
99m Tc source data was evaluated for different combinations of detector phantom distance, detector source distance and phantom source distance. Measurements were performed by increasing the Lucite phantom thickness in 1cm steps to 20 cm. Spatial resolution, detection efficiency and entrance absorbed dose rate were measured for the uncollimated and collimated transmission source images. Results derived from the energy spectra, obtained with the uncollimated transmission source indicate that scatter contribution increases with decreasing detector source distance. The scatter component in the uncollimated transmission images (detector source distances≥60cm; phantom source distances≥40cm) was comparable to that obtained with collimated transmission images. Attenuation coefficients obtained compared well (0.168cm−1 vs. 0.171cm−1 ). The full widths at half maxima differed by less than 0.9mm. The detection efficiency of the uncollimated source was 2.5 times higher than obtained with the collimated source. The entrance absorbed dose obtained from an uncollimated source was 3.75 times larger than that obtained from the collimated source. An uncollimated transmission source (detector source distance≥60cm) results in acceptable image characteristics and presents a low cost, low dose, high efficiency option for transmission imaging. [ABSTRACT FROM AUTHOR]- Published
- 2011
- Full Text
- View/download PDF