1. Multiscale Anisotropic Texture Unsupervised Clustering for Photographic Paper
- Author
-
Stéphane Roux, Pierre Borgnat, Paul Messier, Patrice Abry, Nicolas Tremblay, Herwig Wendt, Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Normale Supérieure de Lyon - ENS de Lyon (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Université Claude Bernard-Lyon I - UCBL (FRANCE), Paul Messier (USA), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Signal et Communications (IRIT-SC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS), Chercheur indépendant, Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
Stability criteria ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Traitement des images ,Databases ,Wavelet transforms ,Image texture ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Texture filtering ,Traitement du signal et de l'image ,Computer vision ,Laplace equations ,Anisotropy ,Synthèse d'image et réalité virtuelle ,ComputingMethodologies_COMPUTERGRAPHICS ,business.industry ,Wavelet transform ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Pattern recognition ,Vision par ordinateur et reconnaissance de formes ,Intelligence artificielle ,Filter bank ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Kernel ,Kernel (image processing) ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Artificial intelligence ,Unsupervised clustering ,business ,Art ,Photographic paper - Abstract
International audience; Texture characterization of photographic papers is likely to provide scholars with valuable information regarding artistic practices. Currently, texture assessment remains mostly based on visual and manual inspections, implying long repetitive tasks prone to inter- and even intra-observer variability. Automated texture characterization and classification procedures are thus important tasks in historical studies of large databases of photographic papers, likely to provide quantitative and reproducible assessments of texture matches. Such procedures may, for instance, produce vital information on photographic prints of uncertain origins. The hyperbolic wavelet transform, because it relies on the use of different dilation factor along the horizontal and vertical axes, permits to construct robust and meaningful multiscale and anisotropic representation of textures. In the present contribution, we explore how unsupervised clustering strategies can be complemented both to assess the significance of extracted clusters and the strength of the contribution of each texture to its associated cluster. Graph based filterbank strategies are notably investigated with the aim to produce small size significant clusters. These tools are illustrated at work on a large database of about 2500 exposed and non exposed photographic papers carefully assembled and documented by the MoMA and P. Messier's foundation. Results are commented and interpreted.
- Published
- 2015