1. Paper-Based Analytical Devices Based on Amino-MOFs (MIL-125, UiO-66, and MIL-101) as Platforms towards Fluorescence Biodetection Applications
- Author
-
Sofía V. Piguillem, Germán E. Gomez, Gonzalo R. Tortella, Amedea B. Seabra, Matías D. Regiart, Germán A. Messina, and Martín A. Fernández-Baldo
- Subjects
analytical device ,paper biosensor ,MOFs platform ,biomolecules ,alkaline phosphatase enzyme ,Biochemistry ,QD415-436 - Abstract
In this study, we designed three promising platforms based on metal–organic frameworks (MOFs) to develop paper-based analytical devices (PADs) for biosensing applications. PADs have become increasingly popular in field sensing in recent years due to their portability, low cost, simplicity, efficiency, fast detection capability, excellent sensitivity, and selectivity. In addition, MOFs are excellent choices for developing highly sensitive and selective sensors due their versatility for functionalizing, structural stability, and capability to adsorb and desorb specific molecules by reversible interactions. These materials also offer the possibility to modify their structure and properties, making them highly versatile and adaptable to different environments and sensing needs. In this research, we synthesized and characterized three different amino-functionalized MOFs: UiO-66-NH2 (Zr), MIL-125-NH2 (Ti), and MIL-101-NH2 (Fe). These MOFs were used to fabricate PADs capable of sensitive and portable monitoring of alkaline phosphatase (ALP) enzyme activity by laser-induced fluorescence (LIF). Overall, amino-derivated MOF platforms demonstrate significant potential for integration into biosensor PADs, offering key properties that enhance their performance and applicability in analytical chemistry and diagnostics.
- Published
- 2024
- Full Text
- View/download PDF