Nicolas Rodriguez, Daniel Ladant, Maryline Davi, Ahmed Haouz, Bertrand Raynal, Darragh P. O'Brien, Alexis Voegele, Ariel E. Mechaly, Patrick Weber, Sébastien Brûlé, Pauline Gehan, Dominique Durand, Mirko Sadi, Sylviane Hoos, Sébastien Brier, Alexandre Chenal, Dorothée Raoux-Barbot, Patrice Vachette, Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Université de Paris (UP), Laboratoire des biomolécules (LBM UMR 7203), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Biophysique Moléculaire (plateforme) - Molecular Biophysics (platform), Cristallographie (Plateforme) - Crystallography (Platform), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Plateforme technologique de RMN biologique - Biological NMR Technological Platform, A.V. was supported by a DIM MalInf grant from the region Ile‐de‐France. M.S. was supported by the Pasteur – Paris University (PPU) International PhD Program. D.P.O.B. was supported by Institut Pasteur (grants PasteurInnoV15006‐01A and PTR451). P.G. was supported by Sorbonne Université. Funding is acknowledged from Agence Nationale de la Recherche (grant number CACSICE Equipex ANR‐11‐EQPX‐0008). Region Ile de France (grant number DIM MalInf 2016), CNRS (UMR 3528), Institut Pasteur (grant numbers PasteurInnoV15006‐01A, PTR451 and PTR166‐19, PPUIP program). The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript., The authors acknowledge SOLEIL and ESRF for provision of synchrotron radiation facilities. The authors thank the staffs of the DISCO, PROXIMA‐1, and SWING beamlines for constant support and help during data collection (Synchrotron SOLEIL, St Aubin, France) and MASSIF (Synchrotron ESRF, Grenoble, France) beamlines for assistance during the X‐ray diffraction data collection., ANR-11-EQPX-0008,CACSICE,Centre d'analyse de systèmes complexes dans les environnements complexes(2011), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université Paris Cité (UPCité), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département de Chimie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Chenal, Alexandre, and Equipements d'excellence - Centre d'analyse de systèmes complexes dans les environnements complexes - - CACSICE2011 - ANR-11-EQPX-0008 - EQPX - VALID
The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454–484), which exhibits membrane‐active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N‐terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells., The mechanism of cell invasion by bacterial toxins is still poorly understood. The adenylate cyclase (CyaA) toxin from Bordetella pertussis, the causative agent of whooping cough, directly translocates its catalytic domain across plasma membranes. The membrane‐permeabilizing segment (yellow) of CyaA translocates across the plasma membrane and binds calmodulin (red), which assists the entry of the catalytic domain (blue) into host cells while the hydrophobic and acylation domains (green) interact with the membrane and the C‐terminal Repeat‐in‐Toxin domain (grey) remains in the extra‐cellular milieu.