1. Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China.
- Author
-
Tai, Zhiguo, Su, Xiaokun, Shen, Wenjuan, Wang, Tongyu, Gu, Chenfeng, He, Jiaying, and Huang, Chengquan
- Subjects
- *
LAND surface temperature , *FOREST declines , *FORESTS & forestry , *FOREST management , *DEFORESTATION , *REFORESTATION , *AFFORESTATION - Abstract
Forest change affects local and global climate by altering the physical properties of the land surface. Accurately assessing urban forest changes in local land surface temperature (LST) is a scientific and crucial strategy for mitigating regional climate change. Despite this, few studies have attempted to accurately characterize the spatial and temporal pattern of afforestation, reforestation, and deforestation to optimize their effects on surface temperature. We used the China Land Cover Dataset and knowledge criterion-based spatial analysis model to map urban forestation (e.g., afforestation and reforestation) and deforestation. We then analyzed the impacts of these activities on LST from 2010 to 2020 based on the moving window strategy and the spatial–temporal pattern change analysis method in the urban agglomerations of the Yangtze River Delta (YRD) and Pearl River Delta (PRD), China. The results showed that forest areas declined in both regions. Most years, the annual deforestation area is greater than the yearly afforestation areas. Afforestation and reforestation had cooling effects of −0.24 ± 0.19 °C and −0.47 ± 0.15 °C in YRD and −0.46 ± 0.10 °C and −0.86 ± 0.11 °C in PRD. Deforestation and conversion of afforestation to non-forests led to cooling effects in YRD and warming effects of 1.08 ± 0.08 °C and 0.43 ± 0.19 °C in PRD. The cooling effect of forests is more evident in PRD than in YRD, and it is predominantly caused by reforestation. Moreover, forests demonstrated a significant seasonal cooling effect, except for December in YRD. Two deforestation activities exhibited seasonal warming impacts in PRD, mainly induced by deforestation, while there were inconsistent effects in YRD. Overall, this study provides practical data and decision-making support for rational urban forest management and climate benefit maximization, empowering policymakers and urban planners to make informed decisions for the benefit of their communities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF