1. Test af fluorometer i en turbid og humøs sø : kan et in situ fluorometer erstatte laboratoriemålinger af klorofyl a?
- Author
-
Reinemo, Jonas Steensgaard, Rohrlack, Thomas, Haaland, Ståle, and Roseth, Roger
- Abstract
Overvågning af søer har de seneste årtier fået større og større opmærksomhed. Dette skyldes de stadigt stigende udfordringer i forbindelse med at holde den antropogene påvirkning ved et minimum. Både naturlige sæsonvariationer, kemiske processer, og antropogen påvirkning kan medføre hurtige ændringer i vandkemien. Dette kan gå ud over kvaliteten af vores bade- og drikkevand, med algeopblomstringer som i sidste ende kan påvirke forbrugerens helbred. Disse trusler mod vores vandkvalitet kræver hurtig og valid overvågning, sådan at passende foranstaltninger kan foretages. Konventionelle overvågningsmetoder af fytoplankton omfatter månedlig eller i særlige tilfælde intensiveret vandprøvetagning og efterfølgende laboratorieanalyse. Denne proces er langsommelig, og når måske ikke at opfange ændringer i vandkvaliteten i tide. In situ overvågning med real time data kan være løsningen på dette problem, men der er flere faktorer som påvirker gyldigheden af målingerne. Blandt andet kan CDOM absorbere og udsende fluorescens af det lys som benyttes til excitation af fytoplankton. Yderligere kan turbiditet have en effekt ved at sprede og absorbere lys, og derved give mere tilfældige data. Samtidigt kan vandrende arter også påvirke målingerne, da sensoren blot måler ved et enkelt punkt i vandsøjlen, mens arterne regulerer deres vertikale position dagligt for at optimere vækst. Disse interferenser blev i denne opgave undersøgt i Isesjøen, en turbid og humøs sø, som har oplevet en stigende mængde af algen Gonyostomum semen de seneste årtier. I perioden fra d. 12. juni til d. 15. september blev der derfor indsamlet vandprøver til analyse af klorofyl a med HPLC. Yderligere blev sensoren MPS-K16 fra SEBA Hydrometrie med blåt excitationslys, udsat for at måle klorofyl a ved 4 meters dybde hvert kvarter. Resultaterne blev sammenlignet statistisk med simple regressionsanalyser, for at finde ud af, i hvor stor grad de enkelte parametre påvirker in situ dataene. Dette studie fandt at særligt CDOM (R2=0,63) og vandrende arter (R2=0,45) spiller en rolle i forholdet mellem de to analysemetoder. I starten af måleperioden viste in situ metoden op mod fire gange højere koncentrationer end laboratoriemetoden (hhv. 8 og 2 g/l), mens de tilnærmede sig hinanden i takt med øgede koncentrationer af G. semen. En model blev opstillet for at korrigere for CDOM i in situ målemetodens overestimater af klorofyl a koncentrationerne. Modellen viste en god evne til at forudsige laboratorieanalyserne (R2=0,89), dog med stor usikkerhed grundet få data. In situ sensoren formåede at registrere G. semens døgnvandringer, men det blev ikke muligt at opstille en model til korrektion for algens indflydelse på forholdet mellem de to målemetoder. In the past few decades, lake monitoring has received an increased amount of attention. This is in part due to the challenges with regards to keeping anthropogenic causes at a minimum. Both natural seasonal changes, chemical processes and anthropogenic causes can quickly change water chemistry in a lake. This might influence the quality of our bathing and drinking water reservoirs, with mass blooms of phytoplankton, thus directly affect consumer health. These threats to our water quality require swift and valid monitoring, in order to take necessary precautions, to ensure consumer safety. Conventional methods of monitoring phytoplankton are usually based on monthly or in special cases intensified water sampling and laboratory analysis. This both acts as a snapshot for the water quality and is a slow analytical process, which may not catch changes in water quality in time. In situ monitoring with real time data could be the solution for this issue. However, there are several factors that might affect measurement validity. Among others, CDOM can absorb and fluoresce the light used for excitation of the phytoplankton. Furthermore, turbidity might have an effect by spreading and absorbing light, thus adding to the randomness of the data. At the same time, wandering species might affect the the measurements, due to the sensor just being able to analyse chlorophyll a at one specific depth, where the algae might not be. This study takes on the task of investigating these interferences in Isesjøen, a turbid and humic sub-boreal lake with a high abundance of the species Gonyostomum semen. In the period between the 12th of june to 15th september, water samples were taken for analysis of chlorophyll a with HPLC. Further, the sensor MPS-K16 from SEBA Hydrometrie with blue excitation light was implemented at a 4 meters depth for chlorophyll a measurements every 15th minute. These results were compared statistically with simple regressional analysis to test how the abovementioned parmeters affect the in situ data. This study found a high correlation between CDOM (R2=0,63) and wandering species (R2=0,45) in the relationship between the two methods for analysing chlorophyll. At the start of the measuring period, the in situ method showed up to four times higher values than the laboratory method, while they approximated eachother with the introduction of G. semen. A model to correct for CDOM in the in situ overestimations was established. The model showed a high ability to predict the laboratory analyses (R2=0,89), although with a low certainty due to few data. The in situ sensor was able to register the daily wanderings of G. semen, but this study was unable to propose a model to correct for this in the comparison between in situ and laboratory chlorophyll a analysis. M-MINA
- Published
- 2019