1. ESSnuSB collaboration
- Author
-
Alekou, A., Baussan, E., Blaskovic Kraljevic, N., Blennow, M., Bogomilov, M., Bouquerel, E., Burgman, A., Carlile, C. J., Cederkall, J., Christiansen, P., Collins, M., Cristaldo Morales, E., Alessi, L. D., Danared, H., André, J. P. A. M., Delahaye, J. P., Dracos, M., Efthymiopoulos, I., Ekelöf, T., Eshraqi, M., Fanourakis, G., Fernandez-Martinez, E., Folsom, B., Ghosh, M., Gokbulut, G., Halić, L., Kayis Topaksu, A., Kliček, B., Krhač, K., Lindroos, M., Mezzetto, M., Oglakci, M., Ohlsson, T., Olvegård, M., Ota, T., Park, J., Petkov, G., Poussot, P., Rosauro-Alcaraz, S., Stavropoulos, G., Stipčević, M., Terranova, F., Thomas, J., Tolba, T., Tsenov, R., Vankova-Kirilova, G., Vassilopoulos, N., Wildner, E., jacques wurtz, Zormpa, O., Zou, Y., HEP, INSPIRE, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ESSnuSB, and European Organization for Nuclear Research (CERN)
- Subjects
Physics - Instrumentation and Detectors ,far detector ,QC770-798 ,hierarchy ,Astrophysics ,High Energy Physics - Experiment ,Subatomär fysik ,High Energy Physics - Experiment (hep-ex) ,neutrino ,High Energy Physics - Phenomenology (hep-ph) ,Subatomic Physics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,neutrino: flux: calculated ,Detectors and Experimental Techniques ,physics.ins-det ,ComputingMilieux_MISCELLANEOUS ,Physics ,hep-ph ,Instrumentation and Detectors (physics.ins-det) ,essnusb ,cp violation ,QB460-466 ,High Energy Physics - Phenomenology ,neutrino: detector ,CP ,violation ,proposed experiment ,numerical calculations: Monte Carlo ,Particle Physics - Experiment ,performance ,[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,neutrino: mass difference ,FOS: Physical sciences ,Nuclear and particle physics. Atomic energy. Radioactivity ,ESSnuSB ,CP: violation ,conservation law ,mixing ,calculated ,flavor: 3 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Particle Physics - Phenomenology ,flavor ,hep-ex ,background ,sensitivity ,neutrino: mixing angle ,flux ,[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,atmosphere ,neutrino: oscillation ,neutrino: mixing - Abstract
In this paper, we present the physics performance of the ESSnuSB experiment in the standard three flavor scenario using the updated neutrino flux calculated specifically for the ESSnuSB configuration and updated migration matrices for the far detector. Taking conservative systematic uncertainties corresponding to a normalization error of $5\%$ for signal and $10\%$ for background, we find that there is $10\sigma$ $(13\sigma)$ CP violation discovery sensitivity for the baseline option of 540 km (360 km) at $\delta_{\rm CP} = \pm 90^\circ$. The corresponding fraction of $\delta_{\rm CP}$ for which CP violation can be discovered at more than $5 \sigma$ is $70\%$. Regarding CP precision measurements, the $1\sigma$ error associated with $\delta_{\rm CP} = 0^\circ$ is around $5^\circ$ and with $\delta_{\rm CP} = -90^\circ$ is around $14^\circ$ $(7^\circ)$ for the baseline option of 540 km (360 km). For hierarchy sensitivity, one can have $3\sigma$ sensitivity for 540 km baseline except $\delta_{\rm CP} = \pm 90^\circ$ and $5\sigma$ sensitivity for 360 km baseline for all values of $\delta_{\rm CP}$. The octant of $\theta_{23}$ can be determined at $3 \sigma$ for the values of: $\theta_{23} > 51^\circ$ ($\theta_{23} < 42^\circ$ and $\theta_{23} > 49^\circ$) for baseline of 540 km (360 km). Regarding measurement precision of the atmospheric mixing parameters, the allowed values at $3 \sigma$ are: $40^\circ < \theta_{23} < 52^\circ$ ($42^\circ < \theta_{23} < 51.5^\circ$) and $2.485 \times 10^{-3}$ eV$^2 < \Delta m^2_{31} < 2.545 \times 10^{-3}$ eV$^2$ ($2.49 \times 10^{-3}$ eV$^2 < \Delta m^2_{31} < 2.54 \times 10^{-3}$ eV$^2$) for the baseline of 540 km (360 km)., Comment: 13 pages, 8 figures, 3 tables. Changes: Text updated, this is a published version
- Published
- 2021