Cilj ovog rada je istražiti hipotezu da je Reynoldsova napetost odgovorna za prijenos momenta količine gibanja od polova prema ekvatoru i time može objasniti opažani profil diferencijalne rotacije Sunca. Također su analizirane meridijanske brzine, rezidualne rotacijske brzine, korelacije između brzina te torzione oscilacije. Od podataka su korišteni položaji grupa pjega iz baze GPR (Greenwich Photoheliographic Results) i SOON/USAF/NOAA (Solar Observing Optical Network/United States Air Force/National Oceanic and Atmospheric Administration), te položaji koroninih svijetlih točaka sa snimaka SOHO/EIT (Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope) i SDO/AIA (Solar Dynamics Observatory/Atmospheric Imaging Assembly). Brzine su izračunate iz promjene položaja grupa pjega i svijetlih točaka, primjenom sinodičkosideričke korekcije i korekcije visine. Istražene su ovisnosti brzina o heliografskoj širini, vremenu i fazi ciklusa Sunčeve aktivnosti. Rezultati pokazuju da se grupe pjega gibaju prema središtu aktivnosti, tj. srednjoj heliografskoj širini pjega, na obje polutke tijekom cijele faze ciklusa aktivnosti. Gibanja koroninih svijetlih točaka pokazuju kompleksniji profil koji se mijenja s fazom ciklusa. Iznosi meridijanskih i rezidualnih rotacijskih brzina su u rasponu ±10 m s-1. Očekivani uzorak torzionih oscilacija nije opažen unutar statistički značajne vrijednosti. Horizontalna Reynoldsova napetost je negativna u cijelom području promatranih heliografskih širina, s naznakom minimuma od q _ −3000 m2 s-2 na širini od ±30_. U korištenoj konvenciji to znači prijenos kutnog momenta prema ekvatoru, u skladu s opažanim profilom rotacije Sunca. Također je unaprijeđena metoda sinodičko-sideričke korekcije. Aims: The main goal of this thesis is to investigate Reynolds stresses and to verify the hypothesis that they are responsible for the angular momentum transport toward the solar equator, maintaining the observed profile of the solar rotation velocity. Residual rotation velocities and meridional velocities and their correlation is also analyzed, as well as their dependence on time, phase of the solar activity cycle and heliographic latitude. Methods: Positions of sunspot groups from GPR (Greenwich Photoheliographic Results) and SOON/USAF/NOAA (Solar Observing Optical Network/United States Air Force/National Oceanic and Atmospheric Administration) catalogs and positions of coronal bright points deduced from images taken by SOHO/EIT (Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope) and SDO/AIA (Solar Dynamics Observatory/ Atmospheric Imaging Assembly) were used to calculate velocities, by applying synodic-sidereal and height corrections. Results: Meridional motions of sunspot groups are toward the center of activity, i.e. the mean latitude of sunspot groups, from all observed latitudes and in all phases of the solar activity cycle. Motions of the coronal bright points show a complex pattern variable in time and phase of solar activity. The range of meridional and residual rotation velocities is ±10 m s-1. Expected pattern of torsional oscillations was not observed within statistical significance. Horizontal Reynolds stress is negative at all available latitudes and indicates that there is a minimum value of q _ −3000 m2 s-2 located at latitudes ±30_. Conclusions: In convetion used where positive velocities indicate poleward motions and negative equatorward motions, negative Reynolds stress indicates that angular momentum is trasported toward the solar equator, in agreement with the observed rotational profile of the Sun. Also, an improved method of calculating the synodic-sidereal correction was presented.