Increasing atmospheric nitrogen (N) deposition greatly affects species diversity, productivity, and stability of ecosystems. It is thus of the great importance to understand how grassland N pools respond to the increased atmospheric N deposition. This study was conducted in a meadow steppe in Erguna, Inner Mongolia, China. There were six levels of N addition ( i.e ., 0, 2, 5, 10, 20 and 50 g·m -2 ·a -1 ) and two levels of mowing ( i.e ., mowing and unmown). Samples of aboveground tissues of dominant plant, root, aboveground litter, and soil to the depth of 100 cm were collected in the seventh year after treatments. The N content was measured and the N pool was calculated. The results showed that N addition significantly increased the N content of aboveground plant tissues and litter, as well as N pools of Leymus chinensis , plant community, litter and ecosystem. Mowing significantly increased the N content of L. chinensis leaf and litter, but reduced N pools of L. chinensis , plant community and litter, and did not affect their responses to N addition. There was a significant interactive effect between mowing and N addition on plant community N pool. High levels of N addition in the unmown treatment led to more N stored in the litter pool, with the saturation threshold for the plant community N pool occurred at 10 g·m -2 ·a -1 . Under mowing treatment, the plant community N pool increased with the increasing N addition, and more N stored in plant community N pool after mowing. Mowing could alleviate the negative impacts of increasing N deposition on biodiversity and ecosystem stability, and extended postponing the occurrence of ecosystem N saturation induced by increasing N deposition.