1. [Effect of Integrated Landscape Characteristics Around Chaohu Lake on River Water Quality Based on Watershed Units].
- Author
-
Wang J, Liu AA, Zhang JW, Chen QS, and Yang HW
- Abstract
Considering the impact of differences in watershed characteristics on river water quality, with the Chaohu Lake Basin as the research object, based on the data of water quality, meteorology, topography, soil, and remote sensing images of the river monitoring points from October 2019 to September 2020, the watershed unit at each monitoring point was divided through digital terrain analysis, and the comprehensive landscape characteristics based on the watershed unit were explored through the comprehensive use of correlation analysis, redundancy analysis, and multiple regression analysis to investigate the influence of comprehensive landscape characteristics based on watershed units (including land use, climate, topography, soil, etc.) on the water quality of rivers around Chaohu Lake. The results showed that:① the water quality of rivers around Chaohu Lake had large spatial differences, with the main pollutants being total nitrogen and ammonia nitrogen. Most of the rivers had total nitrogen concentrations exceeding the Class V water quality standards, and the areas with serious nitrogen and phosphorus pollution were concentrated in the urban area of Hefei and the surrounding rivers, as well as in the middle and lower reaches of the Fengle and Hangbu Rivers. ② The comprehensive landscape characteristics of the watershed unit had a significant impact on the river water quality. Among them, the proportion of built-up land, the density of patches, the dispersion and juxtaposition index, and the Shannon diversity index were positively correlated with the water quality indicators, whereas the proportion of forest and grassland and the spreading index were negatively correlated with the water quality indicators. ③ In different seasons, the effect of the integrated landscape characteristics of the watershed unit on river water quality was stronger in the wet season than in the dry season, which was mainly caused by the difference in precipitation in the dry and wet seasons.
- Published
- 2024
- Full Text
- View/download PDF